минобрнауки россии

федеральное государственное бюджетное образовательное учреждение высшего образования

«Кузбасский государственный технический университет имени Т. Ф. Горбачева» Горный институт

ПОДПИСАНО ЭП КУЗГТУ

Подразделение: горный институт Должность: директор института Дата: 16.05.2022 19:10:49

Хорешок Алексей Алексеевич

Рабочая программа дисциплины

Геометрия недр

Специальность 21.05.04 Горное дело Специализация / направленность (профиль) Маркшейдерское дело

> Присваиваемая квалификация "Горный инженер (специалист)"

> > Формы обучения заочная,очная

Кемерово 2022 г.

Рабочую программу составили:

ПОДПИСАНО ЭП КУЗГТУ

Подразделение: кафедра маркшейдерского дела и геологии Должность: профессор (д.н) Дата: 14.03.2022 11:02:04

Рогова Тамара Борисовна

ПОДПИСАНО ЭП КУЗГТУ

Подразделение: кафедра маркшейдерского дела и геологии Должность: доцент (к.н.)
Дата: 14.03.2022 11:02:04

Корецкий Сергей Борисович

Рабочая программа обсуждена на заседании кафедры маркшейдерского дела и геологии

Протокол № 3/1 от 14.03.2022

ПОДПИСАНО ЭП КУЗГТУ

Подразделение: кафедра маркшейдерского дела и геологии Должность: заведующий кафедрой (к.н)
Дата: 14.03.2022 18:44:06

Михайлова Татьяна Викторовна

Согласовано учебно-методической комиссией по направлению подготовки (специальности) 21.05.04 Горное дело

Протокол № 4/1 от 04.04.2022

ПОДПИСАНО ЭП КУЗГТУ

Подразделение: кафедра маркшейдерского дела и геологии Должность: заведующий кафедрой (к.н)
Дата: 04.04.2022 08:28:21

Михайлова Татьяна Викторовна

2

1 Перечень планируемых результатов обучения по дисциплине "Геометрия недр", соотнесенных с планируемыми результатами освоения образовательной программы

Освоение дисциплины направлено на формирование:

профессиональных компетенций:

- ПК-6 Способность анализировать геодезическую, маркшейдерскую и геологоразведочную информацию с использованием методов теории вероятностей, математической статистики, математического анализа; геометризации, геостатистики, определять закономерности пространственного размещения структурных и качественных показателей месторождения, а также характеристик природных и техногенных процессов
- ПК-7 Способность на основании результатов геометризации составлять прогнозы размещения показателей месторождения для планирования геологоразведочных, подготовительных и добычных работ, определять наиболее рациональные системы разработки для полного извлечения запасов полезных ископаемых

Результаты обучения по дисциплине определяются индикаторами достижения компетенций

Индикатор(ы) достижения:

Определяет закономерности пространственного размещения структурных и качественных показателей.

Выполняет геометризацию месторождений полезных ископаемых.

- Составляет прогнозы размещения показателей месторождения для планирования геологоразведочных, подготовительных и добычных работ.

Результаты обучения по дисциплине:

Знать:

- виды моделей, применяемых при геометризации недр; основы теории геохимического поля П. К. Соболевского;
- методы и технологии горно-геометрического моделирования месторождений твердых полезных ископаемых и горных отводов;

методы анализа и классификации факторов, определяющих горно-геологические условия ведения горных работ.

Уметь:

- обосновывать методику геометризации для различных горно-геологических условий разрабатываемых месторождений полезных ископаемых;

классифицировать факторы, определяющие горно-геологические условия ведения горных работ. Владеть:

- навыками построения горно-геометрических моделей;

навыками использования горно-геометрического моделирования для оценки значений и классификации факторов, определяющих горно-геологические условия.

2 Место дисциплины "Геометрия недр" в структуре ОПОП специалитета

Для освоения дисциплины необходимы знания умения, навыки и (или) опыт профессиональной деятельности, полученные в рамках изучения следующих дисциплин: Геология, Математика, Математическая обработка результатов измерений, Начертательная геометрия, Основы горного дела (открытая геотехнология), Основы горного дела (подземная геотехнология), Основы горного дела (строительная геотехнология).

Дисциплина формирует у студента теоретические представления об основах горногеометрического

моделирования месторождений полезных ископаемых, технологии его выполнения и решаемых на его основе технологических задач. Изучение дисциплины направлено на решение практических задач маркшейдерского обеспечения эффективного и рационального освоения недр, постановку эксплуатационно-разведочных работ и управление качеством продукции.

Это позволяет осознанно подойти в дальнейшем к изучению других дисциплин профессионального цикла, таких как «Рациональное использование и охрана недр», «Планирование горных работ на шахтах», «Планирование горных работ на разрезах», «Маркшейдерское обеспечение безопасности горных работ» и др., в рамках которых происходит более подробное рассмотрение всех аспектов добычи полезных ископаемых.

3 Объем дисциплины "Геометрия недр" в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам занятий) и на самостоятельную работу обучающихся

Общая трудоемкость дисциплины "Геометрия недр" составляет 8 зачетных единиц, 288 часов.

Фанала объемания		Количество часов		
Форма обучения		3Ф	03Ф	
Курс 4/Семестр 7				
Всего часов	108	108		
Контактная работа обучающихся с преподавателем (по видам учебных занятий):				
Аудиторная работа				
Лекции	26	4		
Лабораторные занятия	32	6		
Практические занятия				
Внеаудиторная работа				
Индивидуальная работа с преподавателем:				
Консультация и иные виды учебной деятельности				
Самостоятельная работа	50	94		
Форма промежуточной аттестации	зачет	зачет /4		
Курс 4/Семестр 8				
Всего часов	180	180		
Контактная работа обучающихся с преподавателем (по видам учебных занятий):				
Аудиторная работа				
Лекции	26	6		
Лабораторные занятия	32	4		
Практические занятия				
Внеаудиторная работа				
Индивидуальная работа с преподавателем:				
Курсовое проектирование	2	1		
Консультация и иные виды учебной деятельности				
Самостоятельная работа	84	160		
Форма промежуточной аттестации	экзамен /3	36 экзамен /9)	

4 Содержание дисциплины "Геометрия недр", структурированное по разделам (темам)

4.1. Лекционные занятия

Раздел дисциплины, темы лекций и их содержание	Объем в часах по форме обучения	
	ОФ	3Ф
Семестр 7		
1. Введение. Цели, задачи и структура курса. Сущность горногеометрического моделирования. Значение качественной горногеометрической информации для современного горного производства. Виды проекций Основные этапы развития геометрии недр	2	
2. Теория геохимического поля П.К.Соболевского		

99331

3. Виды горно-геометрических моделей размещения показателей (по направлению, площади и объему) 3.1. Графические модели. 3.2. Цифровые модели. 3.3. Аналитические модели.	2	1
4. Стандартный пакет производственной горно-геометрической документации 4.1. Основные методы получения информации. 4.2. Буровой журнал. Таблицы теханализов.	2	
4.3. Содержание и информация, помещаемая на геологических разрезах, структурных, подсчетных планах, проекциях пластов на вертикальную плоскость, планах горизонтов 4.4. Инклинометрическая съемка скважин	2	
5. Построение поверхностей топографического порядка в условиях правомерности интерполяции между значениями признаков в точках измерений. 5.1. Общая методика построения 5.2. Выбор сечения изолиний	2	1
5.3. Построение модели методом ступенчатых точек 5.4. Учет дизъюнктивных нарушений при построениях гипсометрических планов	2	
5.5. Построение модели методом многогранников. 5.6. Выделение участков неопределенности в поведении изолиний и их разрешение.	2	
6. Действия с топографическими поверхностями 6.1. Определение элементов залегания поверхности 6.2. Построение разрезов по произвольным сечениям. Арифметические действия с топоповерхностями. 6.3. Дифференцирование и интегрирование поверхностей.	2	
7. Оценка сложности (изменчивости) геохимического поля 7.1. Вариационные методы. 7.2. Разностные методы. 7.3. Геометрические методы.	2	1
8. Геометризация дизъюнктивных нарушений 8.1. Геометрические элементы дизъюнктива. 8.2. Классификация дизъюнктивных нарушений.	2	
8.3. Геометрическая модель дизъюнктива (эпюра нарушения)	2	
9. Прогноз тектонической нарушенности угольных пластов	2	1
ИТОГО за 7 семестр	26	4
Семестр 8		
10. Геометризация трещиноватости горного массива 10.1. Классификация трещин. 10.2. Наблюдение за трещиноватостью. 10.3. Обработка наблюдений за трещиноватостью. 10.4. Влияние трещиноватости массива на эффективность и безопасность ведения горных работ.	4	2
11. Геометризация пликативных нарушений 11.1. Геометрические элементы складок. 11.2. Классификация пликативных нарушений. 11.3. Геометризация замковых частей цилиндрических и конических складок	2	

12. Геометризация качественных свойств полезного ископаемого 12.1. Виды опробования. 12.2. Обработка результатов опробования. 12.3. Выделение и ограничение ураганных проб. 12.4. Построение горно-геометрических моделей качественных свойств, линейных запасов и содержаний компонентов в условиях правомерности интерполяции.	4	1
13. Построение поверхностей топографического порядка в условиях неправомерности интерполяции между значениями признаков в точках измерений. 13.1. Понятие сглаживания. 13.2. Подходы к выбору размеров окна сглаживания. 13.3. Сглаживание по направлению. 13.4. Сглаживание по площади и объему. 13.5. Горно-геологические показатели, размещение которых моделируется данными методами (гипсометрические планы, планы изомощностей и т. д.).	4	1
14. Управление качеством продукции 15. Оценка качества горно-геометрических моделей	2	2
16. Особенности геометризации рудных, угольных и россыпных месторождений	2	
17. Запасы полезного ископаемого и их подсчет. 17.1. Понятие балансовых, забалансовых и технологичных запасов, кондиции. Классификация запасов по степени разведанности 17.2. Исходные материалы к подсчету запасов	2	
17.3. Подсчет запасов методом геологических блоков. Таблицы подсчета запасов	2	
17.4. Подсчет запасов методом вертикальных сечений. 17.5. Подсчет запасов методом объемной палетки, методом многоугольников	4	
ИТОГО за 8 семестр	26	6

4.2. Лабораторные занятия

Наименование работы	Объем в часах по форме обучения	
	ОФ	3Ф
Семестр 7		
Лабораторная работа № 1. Решение задач в проекции с числовыми отметками	18	2
Лабораторная работа № 2. Геометризация угольного месторождения	6	2
Лабораторная работа № 3. Математические действия с топогра-фическими поверхностями	4	-
Лабораторная работа № 4. Классификация разрывных нарушений .	4	2
Итого за 7 семестр	32	6
Семестр 8		

Лабораторная работа № 5. Обработка материалов по наблюдению за трещиноватостью массива горных пород»		1
Лабораторная работа № 6. Построение комплекта структурных графиков при геометризации полиметаллических месторождений	6	
Лабораторная работа № 7. Построение комплекта качественных графиков при геометризации полиметаллических месторождений	10	2
Лабораторная работа №. 8. Геометризация россыпного месторождения золота	8	1
Итого за 8 семестр	32	4

4.3. Самостоятельная работа обучающегося и перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

Вид СРС		Объем в часах по форме обучения	
	ОФ	3Ф	
Семестр 7			
Изучение теоретического материала с использованием основной и дополнительной литературы, методических материалов, конспектов лекций по темам раздела дисциплины		54	
Оформление отчетов по лабораторным работам, подготовка к защите лабораторных работ	25	40	
Итого за 7 семестр	50	94	
Подготовка к промежуточной аттестации		4	
Семестр 8			
Изучение теоретического материала с использованием основной и дополнительной литературы, методических материалов, конспектов лекций по темам раздела дисциплины		80	
Оформление отчетов по лабораторным работам, подготовка к защите лабораторных работ	20	40	
Выполнение курсового проекта	40	40	
Итого	81	160	
Подготовка к промежуточной аттестации	36	9	

4.3. Самостоятельная работа обучающегося и перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

		Объем в часах по форме обучения	
	ОФ	3Ф	
Семестр 7			
Изучение теоретического материала с использованием основной и дополнительной литературы, методических материалов, конспектов лекций по темам раздела дисциплины	1	54	
Оформление отчетов по лабораторным работам, подготовка к защите лабораторных работ	25	40	
Итого за 7 семестр	50	94	
Подготовка к промежуточной аттестации		4	
Семестр 8			
Изучение теоретического материала с использованием основной и дополнительной литературы, методических материалов, конспектов лекций по темам раздела дисциплины		80	

Оформление отчетов по лабораторным работам, подготовка к защите лабораторных работ	20	40
Выполнение курсового проекта	40	40
Итого	81	160
Подготовка к промежуточной аттестации	36	9

5 Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине "Геометрия недр"

5.1. Паспорт фонда оценочных средств

Планируемые результаты обучения по дисциплине (модулю)

Дисциплина направлена на формирование следующих компетенций выпускника:

		формирование следующих к И н д и к а т о р ы	Результаты обучения по Уровень
		достижения	дисциплине
		компетенции	дисциплине
	о результате освоения	компетенции	
	дисциплины		
			, , , , , , , , , , , , , , , , , , ,
- I	ПК-6	Определяет	Знает виды моделей, Высокий
контрольным		закономерности	применяемых приили
вопросам,			геометризации недр; основы средний
подготовка			теории геохимического поля
отчетов по			П. К. Соболевского; методы и
лабораторным		показателей.	технологии горно-
работам			геометрического
			моделирования
			месторождений твердых
			полезных ископаемых и
			горных отводовю
			Умеет обосновывать
			методику геометризации для
			различных горно-
			геологических условий
			разрабатываемых
			месторождений полезных
			ископаемых.
			Владеет навыками
			построения горно-
			геометрических моделей.
	ПК-7	Выполняет геометризацию	Знает методы анализа и
		месторождений полезных	классификации факторов,
		ископаемых. Составляет	определяющих горно-
		прогнозы размещения	геологические условия
		показателей	ведения горных работ.
		месторождения для	Умеет классифицировать
		планирования геолого-	факторы, определяющие
		разведочных,	горно-геологические условия
		подготовительных и	ведения горных работ.
		добычных работ.	Владеет навыками
			использования горно-
			геометрического
			моделирования для оценки
			значений и классификации
			факторов, определяющих
			горно-геологические условия.

Высокий уровень достижения компетенции - компетенция сформирована частично, рекомендованные оценки: отлично, хорошо, зачтено.

Средний уровень достижения компетенции - компетенция сформирована частично, рекомендованные оценки: хорошо, удовлетворительно, зачтено.

Низкий уровень достижения компетенции - компетенция не сформирована частично, оценивается неудовлетворительно или не зачтено.

5.2. Типовые контрольные задания или иные материалы

Текущий контроль успеваемости и аттестационные испытания обучающихся могут быть организованы с использованием ресурсов ЭИОС КузГТУ.

5.2.1. Оценочные средства при текущем контроле

Текущий контроль обучающегося осуществляется в виде опроса по контрольным вопросам при защите лабораторных работ.

Опрос по контрольным вопросам:

При проведении текущего контроля обучающемуся будет задано (устно или письменно) два контрольных вопроса при защите лабораторной работы.

Например:

- 1. Приведите примеры из практики, где объкт представлен в виде точки, прямой, отрезка, плоскости, поверхностию
 - 2. Назовите элементы залегания плоскости пласта, выработки.

Критерии оценивания:

- 85...100 баллов при правильном и полном ответе на два вопроса;
- 65...84 балла при правильном и полном ответе на один из вопросов и не полном ответе на второй вопрос;
 - 25...64 балла при правильном, но неполном ответе только на один вопрос;
 - 0...24 балла при отсутствии правильных ответов на вопросы.

Количество баллов	074	75100
Шкала оценивания	не зачтено	зачтено

Примерный перечень контрольных вопросов:

Контрольные вопросы для защиты лабораторной работы № 1.

- 1. Назовите элементы залегания плоскости.
- 2. Перечислите варианты задания плоскости в проекции с числовыми отметками.
- 3. Перечислите варианты задания прямой в проекции с числовыми отметками.
- 4. Изобразите в проекции с числовыми отметками плоскость, элементы залегания которой определены в точке К (10, 100, 50), если:
 - a=100°, d=90°;
 - a=100°, d=0°;
 - a=225°, d=45°.
 - 5. С какой целью применяют метод совмещения плоскостей?
- 6. Можно ли в плоскости пласта, имеющего элементы залегания $a=100^\circ$, $d=15^\circ$ провести выработку с углом наклона 18° .Ответ аргументируйте.
 - 7. Приведите признаки:
 - параллельности, пересечения и скрещивания двух прямых;
 - параллельности и перпендикулярности прямой и плоскости;
 - параллельности и перпендикулярности двух плоскостей.
 - 8. Как доказать, что:
 - точка лежит (не лежит) на прямой;
 - точка лежит (не лежит) на плоскости;
 - прямая лежит (не лежит) на плоскости;
 - прямая пересекает плоскость?
- 9. Могут ли пересекаться плоскости, если горизонтали их параллельны? Если да, то как найти линию пересечения таких плоскостей?
- 10. Как графически определить нормальную мощность междупластья для двух параллельных пластов, заданных горизонталями?

528993319

Контрольные вопросы для защиты лабораторной работы № 2.

- 1. В чем особенности построения скрытых топографических поверхностей?
- 2. Приведите порядок построения графической модели в изолиниях.
- 3. Дайте определения понятий: «изолиния», «изогипса», «изомощность».
- 4. Как выбираются «имена» изолиний? Что такое «оптимальная величина сечения изолиний»? Как можно ее определить?
- 5. Поясните сущность метода ступенчатых отметок. Исходная информация, необходимая для реализации данного метода. Условия его применения.
- 6. Поясните сущность метода многогранника. Исходная информация, необходимая для реализации данного метода. Условия его применения.
 - 7. В каких случаях возникает неопределенность в построении изолиний?
 - 8. Как разрешить неопределенность при построении изолиний?
 - 9. Какие производственные задачи решаются с помощью плана изогипс почвы пласта?
 - 10. Какие производственные задачи решаются с помощью плана изомощностей пласта?

Контрольные вопросы для защиты лабораторной работы № 3.

- 1. Что такое «топографическая поверхность»?
- 2. Какими свойствами обладает топографическая поверхность?
- 3. Каким требованиям должны отвечать топоповерхности при выполнении над ними математических действий?
 - 4. Приведите примеры, где на практике применяются действия с поверхностями.
- 5. Какое математическое действие и с какими топоповерхностями следует применить при установлении линии выхода пласта на поверхность? под наносы?
 - 6. Какое математическое действие позволяет определить производительность угольного пласта?
 - 7. Какие приемы используются при выполнении действий с топоповерхностями, если:
 - изолинии поверхностей пересекаются?
 - изолинии поверхностей не пересекаются?
 - изолинии поверхностей параллельны?
- 8. Как выполняются действия с топоповерхностями, если они заданы в виде регулярной цифровой модели? Не регулярной цифровой модели?
- 9. Можно ли выполнять математические действия с несколькими топоповерхностями? Приведите примеры из практики.
- 10. По разведочным скважинам имеется информация: отметка рельефа земной поверхности, отметка подсечения почвы пласта, вертикальная мощность пласта. Как построить план изоглубин залегания пласта?

Контрольные вопросы для защиты лабораторной работы № 4.

- 1. Назовите геометрические элементы разрывного нарушения.
- 2. Назовите вид каждого из нарушений, приведенных на рисунке, по взаимному положению крыльев.
- 3. Изобразите на схеме для пласта пологого (крутого) залегания согласный (несогласный) взброс (сброс).
- 4. Изобразите для пласта пологого (крутого) залегания разрывное нарушение с зиянием (с перекрытием).
- 5. Назовите вид каждого из нарушений (1, 2, 3), приведенных на рисунке, по взаимному расположению пласта и сместителя.
- 6. Какой вид нарушения определяет угол между линией простирания пласта и линией скрещения, составляющий 25°, 55°, 75°?
- 7. Известны следующие данные о тектоническом разрыве: в вертикальном разрезе пласт в висячем крыле смещен вверх относительно лежачего; сместитель крутой и представлен мощной зоной дробления; угол между линией скрещения и простирания пласта равен 70°; двугранный угол между пластом и сместителем больше 90°. Дать определение тектонического разрыва.
 - 8. Как зависит от угла падения сместителя длина выработок, проходимых по породам.
- 9. При каких углах между линией скрещения пласта и сместителя и простиранием пласта будут наблюдаться наименее благопроиятные условия при ведении очистных работ?
- 10. Изобразите на вертикальном разрезе вкрест простираниия сместителя поперечный крутопадающий взброс с перекрытием пласта, средней амплитудой и мощной зоной дробления.

8993319

Контрольные вопросы для защиты лабораторной работы № 5.

- 1. С какой целью составляется диаграмма трещиноватости?
- 2. Определите угол падения 1-й системы трещин (2-й, 3-й), показанной на диаграмме.
- 3. Определите азимут падения 1-й системы трещин (2-й, 3-й), приведенной на диаграмме.
- 4. На каких основаниях трещины объединяются в одну систему?
- 5. С какой целью строятся изолинии плотности трещиноватости?
- 6. Как определяется интенсивность трещиноватости?
- 7. Какой вид интенсивности трещиноватьсти используется при построении решетки трещиноватости по падению (простиранию) пласта?
 - 8. Какие операции необходимы для построения решетки трешиноватости?
- 9. Какое направление трещин (восстания или падения) при совпадении его с направлением подвигания очистного забоя является неблагоприятным для очистных работ?
- 10. Для какого рисунка характер трещиноватости представляет наибольшую опасность по условиям устойчивости откосов?

Контрольные вопросы для защиты лабораторной работы № 6.

- 1. Назовите виды мощности залежей.
- 2. Как строится контур «осажденной» залежи?
- 3. В каком случае строятся графики изосечений? горизонтальных мощностей?
- 4. Назовите виды структурных графиков.
- 5. Как выбирается положение вертикальной плоскости для построения графических моделей?
- 6. С какой целью строятся структурные графики?
- 7. Как строится план залежи при наличии вертикальных разрезов?
- 8. Как строится план залежи на заданном горизонте?
- 9. Как может быть получена точка выклинивания залежи на вертикальном разрезе?
- 10. При какой форме залежи ее изосечения замыкаются? изосечения параллельны?

Контрольные вопросы для защиты лабораторной работы № 7.

- 1. Чем характеризуется качество руды?
- 2. Что понимается под пробой?
- 3. Как производится оконтуривание залежи?
- 4. В чем сущность метода градиентов В. А. Букринского?
- 5. Что отражает график изолиний содержания компонента? линейных запасов руды? линейных запасов полезного компонента?
 - 6. Дайте пояснения к понятиям «аппроксимация», «интерполяция», «экстраполяция».
 - 7. Что такое «бортовое» содержание полезного компонента?
 - 8. Как определяется линейный запас руды? полезного компонента?
 - 9. Как определить мощность рудного тела по горной выработке?
 - 10. Как определяется граница рудного тела в проекции на вертикальную плоскость?

Контрольные вопросы для защиты лабораторной работы № 8.

- 1. Какие пробы относятся к ураганным? В чем заключается проблема учета ураганных проб?
- 2. Как производится выделение и ограничение ураганных проб по упрощенному варианту метода П. Л. Каллистова?
 - 3. Как производится выделение и ограничение ураганных проб по методу В. И. Смирнова?
 - 4. Как производится выделение и ограничение ураганных проб по методу И. Д. Когана?
- 5. К чему сводятся операции линейного сглаживания? площадного сглаживания? объемного сглаживания?
 - 6. Как определяется показатель изменчивости В. А. Букринского и где он используется?
 - 7. Как можно определить оптимальное окно для сглаживания показателей качества?
 - 8. Опишите порядок построения моделей качественных показателей.
- 9. Какие особенности построенной модели содержания золота рекомендуется особо учесть при планировании развития горных работ.
- 10. Какие особенности построенных моделей мощности торфов и песков рекомендуется особо учесть при планировании развития горных работ.

Отчет по лабораторным работам:

2899331

По каждой лабораторной работе обучающийся самостоятельно оформляет отчет в печатном или электронном формате (согласно перечню лабораторных работ, указанных в п. 4 рабочей программы).

Содержание отчета:

- 1. Наименование работы.
- 2. Цель работы.
- 3. Исходные данные.
- 4. Порядок выполнения работы.
- 5. Выводы.

Критерии оценивания:

- 75...100 баллов при безошибочно выполненном отчете по лабораторной работе;
- 0...74 баллов при наличии замечаний к отчету по лабораторной работе.

Количество баллов	074	75100
Шкала оценивания	не зачтено	зачтено

5.2.2 Оценочные средства при промежуточной аттестации

Формой промежуточной аттестации являются зачет (7 семестр), экзамен и защита курсового проекта (8 семестр), в процессе которых определяется сформированность обозначенных в рабочей программе компетенций.

Инструментом измерения сформированности компетенций обучающегося являются:

- зачтенные отчеты по лабораторным работам;
- ответы (в письменной и/или устной форме) на теоретический вопрос и решение практической задачи, выбранные случайным образом, или итоговое тестирование;
 - публичная защита курсового проекта.

Примерный перечень вопросов на зачет

- 1. Теория геохимического поля П.К.Соболевского.
- 2. Графическая модель.
- 3. Аналитическая модель.
- 4. Цифровая модель.
- 5. Определение сечений изолиний.
- 6. Выделение участков неопределенности.
- 7. Разрешение неопределенности с учетом симметрии геополя.
- 8. Разрешение неопределнности с использованием коррелированных признаков.
- 9. Выбор плоскости проектирования.
- 10. Построение изолиний методом многогранников.
- 11. Построение изолиний методом ступенчатых отметок.
- 12. Последовательность построения графической модели.
- 13. Построение блок-диаграммы.
- 14. Геометрические элементы дизъюнктивного нарушения.
- 15. Определение углов падения топоповерхности.
- 16. Определение направления падения топоповерхности.
- 17. Векторно-градиентная модель топоповерхности.
- 18. Изоградиенты топоповерхности.
- 19. Арифметические действия с поверхностями.
- 20. Исходные данные для геометризации: геологический разрез.
- 21. Исходные данные для геометризации: подсчетный план.
- 22. Исходные данные для геометризации: структурная колонка пласта.
- 23. Инклинометрическая съемка.
- 24. Амплитуды разрывных нарушений.
- 25. Показатели степени нарушенности
- 26. Классификация нарушений по взаимному расположению крыльев.
- 27. Классификация нарушений по углу падения сместителя и формы его проявления.
- 28. Классификация нарушений по углу между линией скрещения и простиранием пласта.
- 29. Классификация нарушений по углу между пластом и сместителем.
- 30. Классификация нарушений по соотношению между направлением падения пласта и

1628993319

сместителя.

- 31. Классификация нарушений по амплитудам.
- 32. Поиск смещенного крыла пласта.
- 33. Прогноз нарушений при проведении выработок.
- 34. Прогноз нарушений по геологическим данным.
- 35. Прогноз показателей нарушенности.

Примерный перечень теоретических вопросов к экзамену

- 1. Генетическая классификация трещин.
- 2. Группировка трещин по морфологическим признакам и по величине.
- 3. Наблюдения за трещиноватостью.
- 4. Обработка наблюдений за трещиноватостью построение розы трещиноватости.
- 5. Обработка наблюдений за трещиноватостью построение точечной диаграммы трещиноватости.
- 6. Обработка наблюдений за трещиноватостью построение изолиний плотности трещиноватости.
 - 7. Карта и решетка трещиноватости.
 - 8. Влияние трещиноватости массива на эффективность и безопасность ведения горных работ.
 - 9. Геометрические элементы складок.
- 10. Классификация пликативных нарушений по направлению падения крыльев относительно шарнира, по углам падения крыльев и по характеру замковой поверхности.
- 11. Классификация пликативных нарушений по углу складки, по углу падения осевой поверхности, по относительной амплитуде, по кривизне замка и по относительной длине складки.
- 12. Построение замка цилиндрической складки при известном положении крыльев и пространственных координатах принадлежащей замку точке.
- 13. Построение замка цилиндрической складки при известном положении крыльев и одном горизонте замка.
- Построение замка конической складки при известном положении крыльев и одном горизонте замка.
- 15. Построение замка конической складки при известном положении крыльев, сечении пласта проходящего через замок и пространственных координатах принадлежащей замку точке.
- 16. Химическое, минералогическое, техническое технологическое опробовании, решаемые ими задачи.
 - 17. Валовый, бороздовый, керновый способы отбора проб.
 - 18. Обработка результатов опробования.
- 19. Горно-геометрические модели качественных свойств, линейных запасов и содержаний компонентов.
 - 20. Выделение и ограничение ураганных проб.
 - 21. Выбор размеров окна сглаживания по направлению, площади и объему.
- 22. Построение горно-геометрических моделей признака по направлению, площади и объему с использование окон сглаживания.
 - 23. Методы сглаживания признака по направлению, площади и объему.
 - 24. Основные методы управления качеством продукции горных предприятий.
- 25. Понятие балансовых и забалансовых запасов, кондиции. Классификация запасов по степени разведанности.
 - 26. Исходные материалы к подсчету запасов.
 - 27. Порядок выделения подсчетных геологических блоков.
 - 28. Подсчет запасов методом геологических блоков.
 - 29. Таблицы подсчета подсчетных значений мощности и зольности.
 - 30. Определение кажущейся плотности угля.
 - 31. Таблицы подсчета запасов методом геологических блоков.
 - 32. Подсчет запасов методом вертикальных параллельных сечений.
 - 33. Подсчет запасов методом вертикальных непараллельных сечений.
 - 34. Таблицы подсчета запасов методом вертикальных сечений.
 - 35. Подсчет запасов методом объемной палетки П.К.Соболевского.
 - 36. Подсчет запасов методом многоугольников А.К.Болдырева

Практические задания на экзамен

8993319

Задача 1. Из точки A (X_A , Y_A , Z_A), находящейся на земной поверхности, задать направление заиловочной скважины так, чтобы она подсекла центр эндогенного пожара, находящийся в точке B (X_B , Y_B , Z_B). Необходимо определить дирекционный угол (a_C) направления и угол наклона (d_C) ствола скважины, а также ее осевую глубину.

Задача 2. Из точки $A(X_A, Y_A, Z_A)$ должна быть пробурена скважина с дирекционным углом a_K и углом падения d_C . Определить координаты X и Y пересечения оси скважины с горизонтом с отметкой Z.

Задача 3. Из точки B (X_{B} , Y_{B} , Z_{B}) запроектировать наклонную выработку длиной L , параллельную выработке C (X_{C} , Y_{C} , Z_{C}) - D (X_{D} , Y_{D} , Z_{D}).

Задача 4. Пласт P подсечен тремя вертикальными скважинами в точках A (X_A , Y_A , Z_A), B (X_B , Y_B , Z_B) и C (X_C , Y_C , Z_C). Необходимо изобразить пласт в проекции с числовыми отметками, найти элементы его залегания.

Задача 5. Из точки D (X_D , Y_D , Z_D) пройдены вертикальная и наклонная (зенитный угол q, дирекционный угол оси a) скважины. Найти координаты X, Y, Z точек встречи скважины c пластом P c элементами залегания a_P и d_P .

Задача 6. В стенках прямоугольного шурфа ABCD измерены углы наклона обнажений пласта \mathbf{d}_{AB} и \mathbf{d}_{BC} . Дирекционные углы направлений AB и BC соответственно равны 0° и 90°. Необходимо определить элементы залегания пласта.

Задача 7. В точке $A(X_A, Y_A, Z_A)$ определены элементы залегания пласта а и d. Изобразить пласт в проекции с числовыми отметками. Отметки изогипс принять кратными 20 м.

Задача 8. Из точки A, лежащей на плоскости пласта P с элементами залегания a_p и d_p провести под углом ј наклонную выработку, оборудованную ленточным конвейером. Определить дирекционный угол оси выработки.

Задача 9. Имеется две выработки: $A(X_A, Y_A, Z_A)$ - $B(X_B, Y_B, Z_B)$ и $C(X_C, Y_C, Z_C)$ - $D(X_D, Y_D, Z_D)$, пройденные по параллельным пластам P_1 и P_2 . Необходимо определить элементы залегания свиты пластов и величину нормальной мощности междупластия.

Задача 10. Пласт P с элементами залегания a_p и d_p пересечен наклонной скважиной, имеющей дирекционный угол оси а и зенитный угол q. Мощность пласта, измеренная по оси скважины, равна mо. Требуется определить вертикальную, нормальную и горизонтальную мощности пласта.

Задача 11. По пласту P, падающему в северном направлении под углом d, пройден штрек, на оси которого лежат точки A (X_A , Y_A , Z_A) и B (X_B , Y_B , Z_B). Необходимо запроектировать уклон AC длиной L. Угол BAC, измеренный в плоскости пласта, равен j.

- 12. В точке A (X_{A} , Y_{A} , Z_{A}), принадлежащей пласту, имеющему элементы залегания а и d, ожидается встреча со стволом разведочной скважины. Построить контур опасной зоны вокруг точки A, если в плоскости пласта он должен иметь форму круга радиусом r с центром в точке A.
- 13. Пласт имеет элементы залегания а и d, точка $A(X_A, Y_A, Z_A)$ находится на линии его выхода под наносы. Со стороны почвы пласта из произвольной точки, имеющей отметку Z, провести под углом ј полевую наклонную горную выработку, параллельную пласту и удаленную от него (по направлению нормали к нему) на L.
- 14. Из точки A (X_A , Y_A , Z_A) задать кратчайшую технологическую скважину на наклонную выработку B (X_B , Y_B , Z_B) C (X_C , Y_C , Z_C). Определить длину скважины, ее зенитный и дирекционный углы и координаты точки встречи с выработкой.

Задача 15. Найти истинное расстояние между точками $A(X_A, Y_A, Z_A)$ и $B(X_B, Y_B, Z_B)$.

Критерии оценивания:

- 85...100 баллов при правильном и полном ответе на вопрос и правильное решение задачи;
- 65...84 баллов при правильном и полном ответе на вопрос или правильном решении задачи и правильном, но не полном ответе на теоретический вопрос;
 - 50...64 баллов при правильном и неполном ответе на вопрос и не до конца решенной задаче;
 - 0...49 баллов при отсутствии правильного ответа на вопрос и не решенной задаче.

Количество баллов	049	5064	6584	85100
Оценка	неудовлетворительно	удовлетворительно	хорошо	отлично

Итоговое тестирование:

Промежуточная аттестация обучающегося может быть организована в виде итогового тестирования.

Примерный перечень тестовых заданий по дисциплине

1. В зависимости от целей процесс геологического изучения недр подразделяется на 5 стадий, которые располагаются в следующей последовательности: Региональное геологическое изучение недр

528993319

и прогнозирование полезных ископаемых. Поисковые работы. Оценочные работы. Разведка месторождения. Эксплуатационная разведка.

- 2. В зависимости от этапа изучения месторождения и конкретных задач различают разведку: региональную, разведочную, эксплуатационную, структурную, поисковую (выбрать один или несколько ответов).
- 3. Объектом геометрического анализа являются «три момента жизни Земли»: форма, свойства, процесс, горно-геометрические модели, взаимодействие свойств и процессов (выбрать один или несколько ответов).
- 4. Определите не правильное утверждение: плоскость в проекции с числовыми отметками может быть задана: тремя точками, не лежащими на одной прямой, прямой и точкой, не лежащей на данной прямой, двумя параллельными прямыми, двумя пересекающимися прямыми, двумя не пересекающимися прямыми.
- 5. На каком из рисунков изображена лоскость в проекции с числовыми отметками, элементы залегания которой равны a=100°, d=90°?

Критерии оценивания при тестировании:

- 85...100 баллов при правильном ответе на 85% и более тестовых заданий;
- 64...84 баллов при правильном ответе от 65 до 85% тестовых заданий;
- 50...64 баллов при правильном ответе от 50 до 64% тестовых заданий;
- 0...49 баллов при правильном ответе менее 50% тестовых заданий.

Количество баллов	049	5064	6584	85100
Оценка	неудовлетворительно	удовлетворительно	хорошо	отлично

Курсовой проект должен быть представлен руководителю проекта в срок, установленный заданием на проектирование. Руководитель осуществляет проверку пояснительной записки и графической части проекта и рекомендует проект к защите.

Критерии оценивания проекта на публичной защите:

- полное раскрытие темы в докладе и презентации, правильные ответы на вопросы, заданные членами комиссии оценка «отлично»;
- полное раскрытие темы в докладе и презентации, правильные ответы на большую часть вопросов комиссии оценка «хорошо»;
- неполное раскрытие темы в докладе и презентации, правильные ответы на часть вопросов комиссии оценка «удовлетворительно».

5.2.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующие этапы формирования компетенций

1. При проведении текущего контроля обучающийся представляет преподавателю отчет по лабораторной работе на бумажном и (или) электронном носителе. Преподаватель после проведения оценочных процедур допускает обучающегося до защиты отчета по лабораторной работе либо возвращает обучающемуся отчет с указанием перечня несоответствий для последующей его корректировки. Обучающийся обязан устранить все указанные несоотвествия и направить повторно отчет преподавателю для проверки.

Защита отчетов по лабораторным работам может проводиться как в письменной, так и в устной форме. При защите отчета по лабораторной работе обучающийся убирает с учебной мебели все личные вещи, электронные средства связи и печатные источники информации. Для подготовки ответов на вопросы обучающийся использует чистые листы бумаги и ручку. На листе бумаги обучающийся указывает свои фамилию, имя, отчество (при наличии), номер учебной группы и дату проведения текущего контроля успеваемости.

Преподаватель задает два вопроса, которые обучающийся может записать на подготовленный для ответа лист бумаги. В течение установленного преподвателем времени обучающийся формулируют (устно или письменно) ответы на заданные контрольные вопросы. По истечении указанного времени листы бумаги с подготовленными ответами обучающийся передает преподавателю для последующего оценивания результатов текущего контроля успеваемости или дает устный ответ на заданные вопросы. При подготовке ответов на вопросы обучающимся запрещается использование любых электронных и печатных источников информации. В случае обнаружения преподавателем факта

1628993319

использования обучающимся при подготовке ответов на вопросы указанных источников информации оценка результатов текущего контроля соответствует 0 баллов и назначается дата повторного прохождения текущего контроля успеваемости обучающегося. Результаты текущего контроля по ответам на заданные вопросы доводятся преподавателем сразу до сведения обучающихся.

Обучающиеся, которые не прошли текущий контроль успеваемости в установленные сроки, обязаны пройти его в срок до начала процедуры промежуточной аттестации по дисциплине в соответствии с расписанием промежуточной аттестации.

Результаты прохождения процедур текущего контроля успеваемости обучающихся учитываются при оценивании результатов промежуточной аттестации обучающихся.

2. Промежуточная аттестация обучающихся проводится после завершения обучения по дисциплине в семестре в соответствии с календарным учебным графиком и расписанием промежуточной аттестации.

Для успешного прохождения процедуры промежуточной аттестации по дисциплине обучающиеся должны:

- 1). получить положительные результаты по всем предусмотренным рабочей программой формам текущего контроля успеваемости;
- 2). получить положительные результаты аттестационного испытания.

Обучающийся, который не прошел текущий контроль, обязан представить на промежуточную аттестацию все задолженности по текущему контролю и пройти промежуточную аттестацию на общих основаниях.

Для успешного прохождения аттестационного испытания обучающийся в течение времени, установленного преподавателем, осуществляет подготовку ответов на два вопроса, выбранных случайным образом.

Для подготовки ответов на заданные вопросы используется чистый лист бумаги и ручка. На листе бумаги обучающиеся указывают свои фамилию, имя, отчество (при наличии), номер учебной группы и дату проведения аттестационного испытания. При подготовке ответов на вопросы обучающимся запрещается использование любых электронных и печатных источников информации. В случае обнаружения преподавателем факта использования обучающимся при подготовке ответов на вопросы указанные источники информации - оценка результатов промежуточной аттестации соответствует 0 баллов и назначается дата повторного прохождения аттестационного испытания.

По истечении указанного преподавателем времени листы с подготовленными ответам на вопросы обучающиеся передают преподавателю для последующего оценивания результатов промежуточной аттестации.

Результаты промежуточной аттестации обучающихся размещаются в ЭИОС КузГТУ.

Текущий контроль успеваемости и промежуточная аттестация обучающихся могут быть организованы с использованием ЭИОС КузГТУ, порядок и формы проведения текущего контроля успеваемости и промежуточной аттестации обучающихся при этом не меняются.

6 Учебно-методическое обеспечение

6.1 Основная литература

- 1. Рогова, Т. Б. Геометрия недр. Особенности геометризации угольных месторождений: учебное пособие [по дисциплине "Геометрия недр", для студентов специальности 21.05.04 "Горное дело" специализации 21.05.04.04 "Маркшейдерское дело" / Т. Б. Рогова, С. В. Шаклеин ; ФГБОУ ВО "Кузбас. гос. техн. ун-т им. Т. Ф. Горбачева", Каф. маркшейд. дела и геологии. - Кемерово : КузГТУ, 2018. - 180 с. - URL: http://library.kuzstu.ru/meto.php?n=91702&type=utchposob:common. - Текст: непосредственный + электронный.
- 2. Рогова, Т. Б. Подсчет запасов угольных месторождений: учебное пособие для студентов вузов, обучающихся по специальности "Маркшейдерское дело" направления подготовки "Горное дело" / Т. Б. Рогова, С. В. Шаклеин, В. О. Ярков; ГОУ ВПО "Кузбас. гос. техн. ун-т". - Кемерово : Издательство КузГТУ, 2010. - 136 c. - URL: http://library.kuzstu.ru/meto.php?n=90430&type=utchposob:common. - Текст : непосредственный + электронный.

6.2 Дополнительная литература

1. Букринский, В. А. Геометрия недр : учебник для студентов вузов, обучающихся по специальности "Маркшейдерское дело" направления подготовки дипломированных специалистов

- "Горное дело" / В. А. Букринский; Моск. гос. горн. ун-т. 3-е изд., перераб. и доп. М. : Московский государственный горный университет, 2002. 549 с. (Высшее горное образование). Текст : непосредственный.
- 2. Геометрия недр (горная геометрия : учебник для вузов по специальности 090100 "Маркшейдерское дело" / В. М. Калинченко [и др.]; под ред. В. М. Калинченко, И. Н. Ушакова. Новочеркасск : НОК, 2000. 526 с. Текст : непосредственный.
- 3. Сученко, В. Н. Анализ исходной информации и прогнозирование в геометрии недр : учебное пособие для студентов вузов, обучающихся по специальности "Маркшейдерское дело" направления подготовки "Горное дело" / В. Н. Сученко. Москва : МГГУ, 2009. 270 с. Текст : непосредственный.
- 4. Букринский, В. А. Геометризация недр / В. А. Букринский. Москва : Московский государственный горный университет, 2004. 327 с. ISBN 574180263X. URL: http://biblioclub.ru/index.php?page=book_red&id=100050 (дата обращения: 26.04.2022). Текст : электронный.

6.3 Методическая литература

- 1. Геометрия недр: методические указания к лабораторным занятиям для обучающихся специальности 21.05.04 "Горное дело", направленность "Маркшейдерское дело" / Кузбасский государственный технический университет имени Т. Ф. Горбачева; Кафедра маркшейдерского дела и геологии, составители: С. Б. Корецкий, Т. Б. Рогова. Кемерово: КузГТУ, 2021. 57 с. URL: http://library.kuzstu.ru/meto.php?n=1465 (дата обращения: 26.04.2022). Текст: электронный.
- 2. Геометрия недр: методические указания по выполнению курсового проекта для обучающихся специальности 21.05.04 "Горное дело", направленность "Маркшейдерское дело" / Кузбасский государственный технический университет имени Т. Ф. Горбачева; Кафедра маркшейдерского дела и геологии, составитель Т. Б. Рогова. Кемерово: КузГТУ, 2021. 44 с. URL: http://library.kuzstu.ru/meto.php?n=1516 (дата обращения: 26.04.2022). Текст: электронный.

6.4 Профессиональные базы данных и информационные справочные системы

- 1. Электронная библиотечная система «Университетская библиотека онлайн» http://biblioclub.ru/
- 2.ЭлектроннаябиблиотекаКузГТУhttps://elib.kuzstu.ru/index.php?option=com_content&view=article&id=230&Itemid=2293.НаучнаяэлектроннаябиблиотекаeLIBRARY.RU
- https://elibrary.ru/projects/subscription/rus_titles_open.asp?
 4. Электронная библиотека Горное образование http://library.gorobr.ru/

6.5 Периодические издания

- 1. Вестник Кузбасского государственного технического университета : научно-технический журнал (печатный/электронный) https://vestnik.kuzstu.ru/
- 2. Горный информационно-аналитический бюллетень: научно-технический журнал (печатный/электронный) https://elibrary.ru/contents.asp?titleid=8628
- 3. Известия высших учебных заведений. Горный журнал : научно-технический журнал (печатный)
- 4. Маркшейдерия и недропользование : научно-технический и производственный журнал (печатный/электронный) https://elibrary.ru/contents.asp?titleid=8820
- 5. Маркшейдерский вестник : научно-технический и производственнный журнал (печатный/электронный) https://elibrary.ru/contents.asp?titleid=8821
 - 6. Недропользование XXI век : межотраслевой научно-технический журнал (печатный)
- 7. ТЭК и ресурсы Кузбасса : региональный научно-производственный и социально-экономический журнал (печатный)
 - 8. Уголь Кузбасса : журнал (печатный)
- 9. Уголь: научно-технический и производственно-экономический журнал (печатный/электронный) https://elibrary.ru/contents.asp?titleid=7749

7 Перечень ресурсов информационно-телекоммуникационной сети «Интернет»

ЭИОС КузГТУ:

17

- а) Электронная библиотека КузГТУ. Текст: электронный // Научно-техническая библиотека Кузбасского государственного технического университета им. Т. Ф. Горбачева: сайт. - Кемерово, 2001. - URL: https://elib.kuzstu.ru/ (дата обращения: 31.10.2019). - Текст: электронный.
- b) Портал.КузГТУ : Автоматизированная Информационная Система (АИС) : [сайт] / Кузбасский государственный технический университет им. Т. Ф. Горбачева. - Кемерово : КузГТУ, [б. г.]. - URL: https://portal.kuzstu.ru/ (дата обращения: 31.10.2019). - Режим доступа: для авториз. пользователей. -Текст: электронный.
- с) Электронное обучение : [сайт] / Кузбасский государственный технический университет им. Т. Ф. Горбачева. - Кемерово : КузГТУ, [б. г.]. - URL: ttps://el.kuzstu.ru/ (дата обращения: 31.10.2019). -Режим доступа: для авториз. пользователей КузГТУ. - Текст: электронный.

8 Методические указания для обучающихся по освоению дисциплины "Геометрия недр"

Самостоятельная работа обучающегося является частью его учебной деятельности. Объемы самостоятельной работы по каждой дисциплине (модулю) практике, государственной итоговой аттестации, устанавливаются в учебном плане.

Самостоятельная работа по дисциплине (модулю), практике организуется следующим образом:

- 1). До начала освоения дисциплины обучающемуся необходимо ознакомиться с содержанием рабочей программы дисциплины (модуля), программы практики в следующем порядке:
- 1.1) содержание знаний, умений, навыков и (или) опыта профессиональной деятельности, которые будут сформированы в процессе освоения дисциплины (модуля), практики;
- 1.2) содержание конспектов лекций, размещенных в электронной информационной среде КузГТУ в порядке освоения дисциплины, указанном в рабочей программе дисциплины (модуля), практики;
 - 1.3) содержание основной и дополнительной литературы.
- 2). В период освоения дисциплины обучающийся осуществляет самостоятельную работу в следующем порядке:
- 2.1) выполнение практических и (или) лабораторных работы и (или) отчетов в порядке, установленном в рабочей программе дисциплины (модуля), практики;
- 2.2) подготовка к опросам и (или) тестированию в соответствии с порядком, установленном в рабочей программе дисциплины (модуля), практики;
- 2.3) подготовка к промежуточной аттестации в соответствии с порядком, установленном в рабочей программе дисциплины (модуля), практики.
- В случае затруднений, возникших при выполнении самостоятельной работы, обучающемуся необходимо обратиться за консультацией к педагогическому работнику. Периоды проведения консультаций устанавливаются в расписании консультаций.

9 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине "Геометрия недр", включая перечень программного обеспечения и информационных справочных систем

Для изучения дисциплины может использоваться следующее программное обеспечение:

- 1. Autodesk AutoCAD 2017
- 2. Autodesk AutoCAD 2018
- 3. Libre Office
- 4. Mozilla Firefox
- 5. Google Chrome
- 6. Opera
- 7. Yandex
- 8. 7-zip
- 9. Microsoft Windows
- 10. ESET NOD32 Smart Security Business Edition
- 11. Kaspersky Endpoint Security
- 12. Браузер Спутник

10 Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине "Геометрия недр"

Для реализации программы учебной дисциплины предусмотрены специальные помещения:

- 1. Учебные аудитории для проведения занятий лекционного типа, занятий семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации.
- 2. Помещения для самостоятельной работы обучающихся, оснащенные компьютерной техникой с возможностью подключения к сети Интернет и обеспеченные доступом в электронную информационно-образовательную среду Организации.

11 Иные сведения и (или) материалы

Для реализации программы учебной дисциплины предусмотрены специальные помещения:

- 1. Учебные аудитории для проведения занятий лекционного типа, занятий семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации.
- 2. Помещения для самостоятельной работы обучающихся, оснащенные компьютерной техникой с возможностью подключения к сети Интернет и обеспеченные доступом в электронную информационно-образовательную среду Организации.

28993319

Список изменений литературы на 01.09.2020

Основная литература

- 1. Рогова, Т. Б. Геометрия недр. Особенности геометризации угольных месторождений: учебное пособие [по дисциплине "Геометрия недр", для студентов специальности 21.05.04 "Горное дело" специализации 21.05.04.04 "Маркшейдерское дело" / Т. Б. Рогова, С. В. Шаклеин; ФГБОУ ВО "Кузбас. гос. техн. ун-т им. Т. Ф. Горбачева", Каф. маркшейд. дела и геологии. Кемерово: КузГТУ, 2018. 180 с. URL: http://library.kuzstu.ru/meto.php?n=91702&type=utchposob:common. Текст: непосредственный + электронный.
- 2. Рогова, Т. Б. Подсчет запасов угольных месторождений: учебное пособие для студентов вузов, обучающихся по специальности "Маркшейдерское дело" направления подготовки "Горное дело" / Т. Б. Рогова, С. В. Шаклеин, В. О. Ярков; ГОУ ВПО "Кузбас. гос. техн. ун-т". Кемерово: Издательство КузГТУ, 2010. 136 с. URL: http://library.kuzstu.ru/meto.php?n=90430&type=utchposob:common. Текст: непосредственный + электронный.

Дополнительная литература

- 1. Букринский, В. А. Геометрия недр: учебник для студентов вузов, обучающихся по специальности "Маркшейдерское дело" направления подготовки дипломированных специалистов "Горное дело" / В. А. Букринский; Моск. гос. горн. ун-т. 3-е изд., перераб. и доп. М.: Московский государственный горный университет, 2002. 549 с. (Высшее горное образование). Текст: непосредственный.
- 2. Геометрия недр (горная геометрия : учебник для вузов по специальности 090100 "Маркшейдерское дело" / В. М. Калинченко [и др.]; под ред. В. М. Калинченко, И. Н. Ушакова. Новочеркасск : НОК, 2000. 526 с. Текст : непосредственный.
- 3. Сученко, В. Н. Анализ исходной информации и прогнозирование в геометрии недр : учебное пособие для студентов вузов, обучающихся по специальности "Маркшейдерское дело" направления подготовки "Горное дело" / В. Н. Сученко. Москва : МГГУ, 2009. 270 с. Текст : непосредственный.
- 4. Букринский, В. А. Геометризация недр / В. А. Букринский. Москва : Московский государственный горный университет, 2004. 327 с. ISBN 574180263X. URL: http://biblioclub.ru/index.php?page=book_red&id=100050 (дата обращения: 01.09.2020). Текст : электронный.

21