минобрнауки россии

федеральное государственное бюджетное образовательное учреждение высшего образования

«Кузбасский государственный технический университет имени Т. Ф. Горбачева»

Институт информационных технологий, машиностроения и автотранспорта

ПОДПИСАНО ЭП КУЗГТУ

Подразделение: институт информационных технологий, машиностроения и автотранспорта
Должность: директор института
Дата: 16.05.2022 17:40:23

Стенин Дмитрий Владимирович

Рабочая программа дисциплины

Силовые агрегаты

Направление подготовки 23.03.03 Эксплуатация транспортно-технологических машин и комплексов Направленность (профиль) 01 Автомобили и автомобильное хозяйство

Присваиваемая квалификация "Бакалавр"

> Формы обучения заочная,очная

Кемерово 2022 г.

1

Рабочую программу составил:

ПОДПИСАНО ЭП КУЗГТУ

Подразделение: кафедра эксплуатации автомобилей Должность: доцент (к.н.) Дата: 14.03.2022 10:08:39

Ащеулов Андрей Сергеевич

Рабочая программа обсуждена на заседании кафедры эксплуатации автомобилей

Протокол № 3/1 от 14.03.2022

ПОДПИСАНО ЭП КУЗГТУ

Подразделение: кафедра эксплуатации автомобилей Должность: заведующий кафедрой (к.н)
Дата: 14.03.2022 21:35:31

Кудреватых Андрей Валерьевич

Согласовано учебно-методической комиссией по направлению подготовки (специальности) 23.03.03 Эксплуатация транспортно-технологических машин и комплексов

Протокол № 4/1 от 04.04.2022

ПОДПИСАНО ЭП КУЗГТУ

Подразделение: кафедра эксплуатации автомобилей Должность: заведующий кафедрой (к.н)
Дата: 04.04.2022 08:37:20

Кудреватых Андрей Валерьевич

1 Перечень планируемых результатов обучения по дисциплине "Силовые агрегаты", соотнесенных с планируемыми результатами освоения образовательной программы

Освоение дисциплины направлено на формирование:

общепрофессиональных компетенций:

ОПК-1 - Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования в профессиональной деятельности;

ОПК-3 - Способен в сфере своей профессиональной деятельности проводить измерения и наблюдения, обрабатывать и представлять экспериментальные данные и результаты испытаний;

Результаты обучения по дисциплине определяются индикаторами достижения компетенций

Индикатор(ы) достижения:

Рассчитывает и подбирает двигатель внутреннего сгорания по заданным характеристикам.

осуществляет поиск неисправностей двигателя внутреннего сгорания с применением различного диагностического оборудования.

Результаты обучения по дисциплине:

методики теплового, динамического и кинематического расчета двигателя внутреннего сгорания;

- основные процессы, протекающие в результате работы двигателя внутреннего сгорания;
- устройство двигателя внутреннего сгорания,;
- устройство и принцип работы системы питания двигателя внутреннего сгорания методики проведения испытаний;
- основные методы диагностики двигателя внутреннего сгорания;
- неисправности, возникающие в процессе работы двигателя внутреннего сгорания;
- приборы для диагностирования двигателя внутреннего сгорания.

производить расчет основных характеристик двигателя по заданным характеристикам;

- анализировать основные параметры двигателя и выявлять факторы оказывающие на них влияние;
 - систематизировать полученные характеристики.

проводить измерения различных параметров двигателя внутреннего сгорания;

- находить неисправности в работе двигателя внутреннего сгорания.

методами подбора входных параметров при расчете двигателя внутреннего сгорания;

- навыками поиска неверных входных параметров.

навыками работы с диагностическим оборудованием;

- методами анализа полученных результатов в результате измерений.

2 Место дисциплины "Силовые агрегаты" в структуре ОПОП бакалавриата

Для освоения дисциплины необходимы знания умения, навыки и (или) опыт профессиональной деятельности, полученные в рамках изучения следующих дисциплин: История автомобильной науки и техники, Теоретическая механика, Теория машин и механизмов.

Дисциплина входит в Блок 1 «Силовые агрегаты» ОПОП. Цель дисциплины - получение обучающимися знаний, умений, навыков и (или) опыта профессиональной деятельности, необходимых для формирования компетенций, указанных в пункте 1.

3 Объем дисциплины "Силовые агрегаты" в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам занятий) и на самостоятельную работу обучающихся

Общая трудоемкость дисциплины "Силовые агрегаты" составляет 9 зачетных единиц, 324 часа.

Форма обучения		Количество часов			
		3Ф	03Ф		
Курс 2/Семестр 4					
Всего часов	144	144			
Контактная работа обучающихся с преподавателем (по видам учебных занятий):					

Фонеца объемания	Колич	ество часо	В
Форма обучения	ОФ	3Ф	03Ф
Аудиторная работа	l		
Лекции	24	8	
Лабораторные занятия	24	8	
Практические занятия			
Внеаудиторная работа	l		
Индивидуальная работа с преподавателем:			
Консультация и иные виды учебной деятельности			
Самостоятельная работа	96	124	
Форма промежуточной аттестации	зачет	зачет /4	
Курс 3/Семестр 5			
Всего часов	180	180	
Контактная работа обучающихся с преподавателем (по видам учебных занятий):			
Аудиторная работа			
Лекции	24	10	
Лабораторные занятия	18	6	
Практические занятия	18	6	
Внеаудиторная работа			
Индивидуальная работа с преподавателем:			
Курсовое проектирование	2	1	
Консультация и иные виды учебной деятельности			
Самостоятельная работа	82	148	
Форма промежуточной аттестации	экзамен /36	экзамен /9	,

4 Содержание дисциплины "Силовые агрегаты", структурированное по разделам (темам)

4.1. Лекционные занятия

Раздел дисциплины, темы лекций и их содержание	Трудоемкость в часах		ax
	ОФ	3Ф	ОЗФ
Семестр 4			
1. Теория силовых агрегатов 1.1. Цели и задачи дисциплины. Классификация силовых агрегатов, понятия и определения. Теоретические индикаторные диаграммы силовых агрегатов	1	0,5	-
1.2. Процесс наполнения, основные параметры и факторы, влияющие на процесс наполнения в бензиновых ДВС и дизелях.	1	0,5	-
1.3 Процесс сжатия, основные параметры и факторы, влияющие на процесс наполнения в бензиновых ДВС и дизелях.	1	0,5	-
1.4. Процесс сгорания. Сгорание топлива в бензиновых двигателях. Основные параметры процесса. Факторы, влияющие на протекание процесса.		0,5	-
1.5. Сгорание топлива в дизелях. Основные параметры процесса. Факторы, влияющие на протекание процесса.	1	0,3	-

1	0,6	-
1	0,1	-
2	-	-
1	0,3	-
7	0,7	-
7	4	-
24	8	-
8	2	-
12	4	-
4	4	-
24	10	-
	1 2 1 7 7 24 8 8 12 4	1 0,1 2 - 1 0,3 7 0,7 7 4 24 8 8 2 12 4

4.2. Лабораторные занятия

Наименование работы	Трудоемкость в часах		ax
	ОФ	3Ф	ОЗФ
Семестр 4			
1.Тепловой баланс бензинового двигателя.	2	2	-
2. Механические потери двигателя	2	2	-
3. Регулировочная характеристика бензинового двигателя по углу опережения зажигания.		-	-
4. Внешняя скоростная характеристика бензинового двигателя.		-	-
5. Характеристика холостого хода.		2	-
6. Индицирование двигателей внутреннего сгорания.		-	-
7. Механические потери двигателя.	2	2	-

8. Регулировочная характеристика бензинового двигателя по сосаву смеси.	4	-	-
Bcero	24	8	-
Семестр 5			
9. Внешняя скоростная характеристика дизеля.	4	2	-
10. Нагрузочная характеристика дизеля.		2	-
11.Тепловой баланс дизеля		2	-
12. Внешняя скоростная характеристика дизеля.		2	-
13. Характеристика по составу смеси	2	2	-
Bcero	18	10	-

4.3 Практические (семинарские) занятия

Тема занятия	Трудоемкость в часах		ıx
	ОФ	3Ф	ОЗФ
Семестр 4			
Выполнение практических занятий не предусмотрено программой.		0	-
Семестр 5			
1. Тепловой расчет силовых агрегатов -ДВС	9	5	-
2. Расчет теплового баланса ДВС.		-	-
3. Кинематический расчет КШМ		1	-
4. Динамический расчет КШМ.		2	-
5. Прочностной расчет механизма.		-	-
Всего	18	6	-

4.4 Самостоятельная работа студента и перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

Вид СРС	Трудоемкость в часах		ax
	ОФ 3Ф ОЗФ		ОЗФ
Семестр 4.			
1. ДЗ (решение задач на тему «Тепловой расчет силовых агрегатов - ДВС»).		72	-
2. ДЗ (решение задач на тему «Расчет теплового баланса ДВС»).		2	-
3. ДЗ (решение задач на тему «Кинематика КШМ»).		15	-
4. ДЗ (решение задач на тему «Динамика КШМ»).	20	35	-

Bcero	96	124	-
Семестр 5			
5. ДЗ (решение задач на тему «Прочностной расчет поршня»).	35	50	-
6. ДЗ (решение задач на тему «Прочностной расчет шатуна»).	13	63	-
Подготовка к промежуточной аттестации	36	36	-
Bcero	84	149	-

4.5 Курсовое проектирование

Курсовой проект включает в себя следующие разделы:

- 1. тепловой расчет силовых агрегатов,
- 2. кинематический расчет кривошипно-шатунного механизма (КШМ) силовых агрега тов
- 3. динамический расчет КШМ,
- 4. прочностной расчет деталей и механизмов силовых агрегатов;
 - расчет поршня,
 - расчет шатуна,
 - расчет корпуса двигателя,
 - расчет газораспределительного механизма.
- 5. графическая часть проекта.
 - 1 лист -динамика КШМ.

Выполнение курсового проекта направлено на формирование следующих компетенций:

- **ОК-5** (общекультурная) использование нормативных и инструктивных документов в своей деятельности
- **ПК-9** (общепрофессиональная) владение основами конструкции и рабочими процессами силовых агрегатов транспортных и транспортно-технологических машин

Работу выполняют студенты дневной и заочной формы обучения.

5 Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине "Силовые агрегаты"

5.1 Паспорт фонда оценочных средств

Планируемые результаты обучения по дисциплине (модулю)

Дисциплина направлена на формирование следующих компетенций выпускника:

Форма(ы) текущего	Компетенции,	Индикатор(ы)	Результаты обучения	Уровень
контроля	формируемые в	достижения	по дисциплине	
	результате	компетенции	(модулю)	
	освоения			
	дисциплины			
	(модуля)			

1621296349

Опрос по	ОПК-1	Рассчитыв	ает и	Знать м	етодики	Высокий
контрольным		подбирает д	цвигатель	теплового,		или
вопросам, подготовка		внутреннего	сгорания	динамичесь	кого и	средний
отчетов по			- 1	кинематич		
практическим и(или)		характерист	чкам.	расчета ді	вигателя	
лабораторным				- внутреннего сг	горания;	
работам,				основные п	роцессы,	
тестирование и т.п. в				протекаюш	цие в	
соответствии с				результате	работы	
рабочей программой				двигателя вн	утреннего	
				сгорания;		
				устройство д	двигателя	
				внутреннего с		
				устройство и		
				работы систем	ы питания	
				двигателя вн	утреннего	
				сгорания		
				Умеет про	изводить	
				расчет о	сновных	
				характери	стик	
				двигателя по	заданным	
				характеристик	ам;	
				анализировать	основные	
				параметры дв	игателя и	
				выявлять	факторы	
				оказывающи	е на них	
				влияние;		
				систематиз	-	
				полученны		
				характерист	ики.	
			1		иетодами	
					входных	
				параметров пр		
				двигателя вн	утреннего	
				сгорания;		
				навыками	поиска	
				неверных	входных	
				параметров.		

Опрос по	ОПК-3	осуществл	яет пои	иск 3	Знать	методики	Высокий
контрольным		неисправ	вностеі	й п	троведения	испытаний;	или
вопросам, подготовка		двигателя і	внутренн	его о	основные	методы	средний
отчетов по		сгорания	I	СД	циагностик	и двигателя	
практическим и(или)		примене	нием	В	внутреннего	о сгорания;	
лабораторным		различно	ОГО	Н	неиспра	вности,	
работам,		диагност	ическо	огов	возникающ	ие в процессе	
тестирование и т.п. в		оборудова	ния.	p	работы	двигателя	
соответствии с				В	внутреннего	о сгорания;	
рабочей программой				П	триборы	для	
				д	циагност	гирования	
				д	двигателя	внутреннего	
					сгорания.		
				У	Умеет	проводить	
				И	измерения	различных	
				П	параметро	в двигателя	
				В	внутреннего	о сгорания;	
				н	находить не	еисправности	
				В	з работе	двигателя	
				В	внутреннего	о сгорания.	
				B	Владеть	навыками	
				p	работы	С	
						гическим	
				О	оборудова	нием;	
				M	методами	анализа	
				П	толученных	к результатов	
				В	в р	езультате	
				И	измерени	й	

Высокий уровень достижения компетенции - компетенция сформирована частично, рекомендованные оценки: отлично, хорошо, зачтено.

Средний уровень достижения компетенции - компетенция сформирована частично, рекомендованные оценки: хорошо, удовлетворительно, зачтено.

Низкий уровень достижения компетенции - компетенция не сформирована частично, оценивается неудовлетворительно или не зачтено.

5.2. Типовые контрольные задания или иные материалы

Ткущий контроль успеваемости и аттестационные испытания обучающихся могут быть организованы с использованием ресурсов ЭИОС КузГТУ.

5.2.1.Оценочные средства при текущем контроле

Опрос по контрольным вопросам:

При проведении текущего контроля обучающимся будет письменно, либо устно задано два вопроса, на которые они должны дать ответы.

Например:

- 1. Назначение КШМ
- 2. Основные элементы КШМ

Критерии оценивания:

- 85-100 баллов при правильном и полном ответе на два вопроса;
- 65-84 баллов при правильном и полном ответе на один из вопросов и правильном, но не полном ответе на другой из вопросов;

- 25-64 баллов при правильном и неполном ответе только на один из вопросов;
- 0-24 баллов при отсутствии правильных ответов на вопросы.

	I	J		1
Количество баллов	0-24	25-64	65-84	85-100
Шкала оценивания	неуд	удовл	хорошо	отлично

Примерный перечень контрольных вопросов: (в соответствии с количеством тем/разделов):

Раздел 1.

Тема 1.1.

- 1. Классификация силовых агрегатов
- 2. 4 такта двигателя
- 3. Объемы двигателя
- 4. Степень сжатия
- 5. Компрессия

Тема 1.2.

- 1. КШМ
- 2. Назначение КШМ
- 3. Состав КШМ
- 4. Назначение КШМ
- 5. Основные неисправности КШМ

Тема 1.3.

- 1. Такт Выпуска
- 2. Момент открытия клапана
- 3. 3 фазы выпуска
- 4. Влияне открытие клапана на газообмен
- 5. Влияние закрытие клапана на газообмен

Тема 1.4.

- 1. Такты впуска
- 2. Перекрытие клапанов
- 3. Обратный выброс
- 4. Влияне открытие клапана на газообмен
- 5. Влияние закрытие клапана на газообмен

Тема 1.5.

- 1. ГРМ
- 2. Назначение ГРМ
- 3. Состав ГРМ
- 4. Фунции ГРМ
- 5. Виды ГРМ

Тема 1.6.

- 1. Система охлаждения (СО)
- 2. Назначение СО
- 3. Состав СО
- 4. Жидкостная СО
- 5. Воздушная СО

Тема 1.7.

- 1. Система смазывания (СМ)
- 2. Состав СМ
- 3. Назначение СМ
- 4. Основные неисправности СМ
- 5. Классификация СМ

Раздел 2.

- 1. Система питания (СП) бензиновых ДВС
- 2. Классификация СП
- 3. Состав СП
- 4. Основные неисправности СП
- 5. Назначение СП

Раздел 3.

- 1. Система питания газобаллонного оборудования (ГБО)
- 2. Классификация ГБО

621296349

- 3. Состав ГБО
- 4. Основные неисправности ГБО
- 5. Назначение ГБО

Раздел 4.

- 1. Классическая система питания двигателя Дизеля (Д)
- 2. Классификация Д
- 3. Состав Д
- 4. Основные неисправности Д
- 5. Назначение Д

Раздел 5.

- 1. Наддув
- 2. Классификация
- 3. Назначение
- 4. Виды
- 5. Основные неисправности

Раздел 6.

- 1. Основные термины и определения диагностики
- 2. Классификация диагностирования по организационным признакам
- 3. Комплект диагностического оборудования современной станции
- 4. Сканеры для диагностики электронных систем управления

Раздел 7.

- 1. Диагностическое оборудование
- 2. Автомобильные сканера
- 3. Классификация сканеров
- 4. Назначение сканеров
- 5. Принцип действия сканеров

Раздел 8.

- 1. Мотор-тестер
- 2. Виды Мотор-тестера
- 3. Классификация Мотор-тестера
- 4. Назначение Мотор-тестера
- 5. Принцип Мотор-тестера

Раздел 9.

- 1. Основные принципы управления двигателем
- 2. Электронные системы впрыскивания бензина
- 3. Микропроцессорные системы управления бензиновым двигателем
- 4. Принцип работы электронной системы управления двигателем
- 5. Общие сведения о датчиках

Раздел 10.

- 1. Разновидности датчиков системы управления двигателем внутреннего сгорания
- 2. Датчики потенциометрического типа
- 3. Датчики терморезисторного типа
- 4. Датчики индукционного типа
- 5. Датчики работающие на эффекте холла

Раздел 11.

- 1. Применение датчика давления в цилиндре
- 2. Принцип работы
- 3. Анализ диаграммы давления
- 4. Распостраненные неисправности
- 5. Проведение измерений

Раздел 12.

- 1. Проведенеие теста эффективности цилиндров
- 2. Принцип работы
- 3. Анализ диаграммы эффективности
- 4. Распостраненные неисправности
- 5. Проведение измерений

Отчеты по лабораторным и (или) практическим работам (далее вместе - работы):

По каждой работе обучающиеся самостоятельно оформляют отчеты в электронном формате

1621296349

(согласно перечню лабораторных и(или) практических работ п.4 рабочей программы).

Содержание отчета:

- 1.Тема работы.
- 2. Задачи работы.
- 3. Краткое описание хода выполнения работы.
- 4. Ответы на задания или полученные результаты по окончании выполнения работы (в зависимости от задач, поставленных в п. 2).
 - 5. Выводы

Критерии оценивания:

- 75 100 баллов при раскрытии всех разделов в полном объеме
- 0 74 баллов при раскрытии не всех разделов, либо при оформлении разделов в неполном объеме.

00201101				
Количество баллов	0-74	75-100		
Шкала оценивания	Не зачтено	Зачтено		

Тестирование:

При проведении текущего контроля обучающимся необходимо ответить на тестирования по каждому разделу / теме/... Тестирование может быть организовано с использованием ресурсов ЭИОС КузГТУ.

Например:

Критерии оценивания:

- 75 100 баллов при ответе на >75% вопросов
- 0 74 баллов при ответе на <75% вопросов

	Количество баллов	0-74	75-100
I	Шкала оценивания	Не зачтено	Зачтено

5.2.2 Оценочные средства при промежуточной аттестации

4 Семестр

Формой промежуточной аттестации является зачет, в процессе которого определяется сформированность обозначенных в рабочей программе компетенций.

Инструментом измерения сформированности компетенций являются:

- зачтенные отчеты обучающихся по лабораторным и(или) практическим работам;
- ответы обучающихся на вопросы во время опроса.

При проведении промежуточного контроля обучающийся отвечает на 2 вопроса выбранных случайным образом, тестировании и т.п. в соответствии с рабочей программой... Опрос может проводиться в письменной и (или) устной, и (или) электронной форме.

Ответ на вопросы:

Критерии оценивания при ответе на вопросы:

- 85-100 баллов при правильном и полном ответе на два вопроса;
- 65-84 баллов при правильном и полном ответе на один из вопросов и правильном, но не полном ответе на другой из вопросов;
 - 50-64 баллов при правильном и неполном ответе только на один из вопросов;
 - 0-49 баллов при отсутствии правильных ответов на вопросы.

Количество баллов	0-49	50-64	65-84	85-100
Шкала оценивания	неуд	удовл	хорошо	отлично
	Не зачтено		Зачтенс)

Примерный перечень вопросов к зачету:

- 1. Основные показатели цилиндра и двигателя
- 2. Фазы газораспределения
- 3. Классификация ДВС и основные понятия
- 4. Как повлияет на работу двигателя изменение угла закрытие впускного клапана?
- 5. Коэффициент избытка воздуха а. Нормальная, бедная, богатая смесь.
- 6. Как повлияет на работу двигателя изменение угла открытия впускного клапана?

621296349

- 7. Индикаторная диаграмма 4-х тактного бензинового двигателя
- 8. Как повлияет на работу двигателя изменение угла закрытие выпускного клапана?
- 9. Процесс наполнения в бензиновых двигателях. Показатели процесса
- 10. Как повлияет на работу двигателя изменение угла открытия выпускного клапана?
- 11. Процесс сжатия. Показатели процесса. Факторы, влияющие на процесс сжатия
- 12. Как влияет на диаграмму изменение угла опережения зажигания?
- 13. Процесс сгорания топлива в бензиновых двигателях
- 14. Чем обуславливается сложность расчета процесса расширения?
- 15. Влияние конструкционных факторов на процесс сгорания топлива в двигателях
- 16. Чем обуславливается сложность расчета процесса сжатия?
- 17. Смесеобразование в разделенных камерах сгорания дизелей
- 18. Процесс рабочего хода. Параметры процесса
- 19. Смесеобразование в неразделенных камерах сгорания дизелей
- 20. Процесс выпуска. Параметры процесса
- 21. Смесеобразование. Типы. Различия.
- 22. Перекрытие клапанов.
- 23. Фазы газораспределения.
- 24. Процесс выпуска. Параметры процесса
- 25. Классификация ДВС и основные понятия
- 26. Механические показатели работы двигателя
- 27. Основные показатели цилиндра и двигателя
- 28. Чем обуславливается сложность расчета процесса сжатия?
- 29. Индикаторная диаграмма 4-х тактного бензинового двигателя
- 30. Как повлияет на работу двигателя изменение угла закрытие впускного клапана?
- 31. Чем обуславливается сложность расчета процесса сжатия?
- 32. Коэффициент избытка воздуха а. Нормальная, бедная, богатая смесь.
- 33. Процесс выпуска. Параметры процесса.
- 34. Как повлияет на работу двигателя изменение угла закрытие выпускного клапана?
- 35. Как повлияет на работу двигателя изменение угла открытия выпускного клапана?
- 36. Процесс сжатия. Показатели процесса. Факторы, влияющие на процесс сжатия
- 37. Классификация ДВС и основные понятия
- 38. Основные показатели цилиндра и двигателя
- 39. Процесс сжатия. Показатели процесса. Факторы, влияющие на процесс сжатия
- 40. Перекрытие клапанов.

5 семестр

Формой промежуточной аттестации является экзамен, в процессе которого определяется сформированность обозначенных в рабочей программе компетенций.

При проведении промежуточного контроля обучающийся отвечает на 2 вопроса выбранных случайным образом, тестировании и т.п. в соответствии с рабочей программой... Опрос может проводиться в письменной и (или) устной, и (или) электронной форме.

Инструментом измерения сформированности компетенций являются:

- зачтенные отчеты обучающихся по лабораторным и(или) практическим работам;
- ответы обучающихся на вопросы во время опроса.

Ответ на вопросы:

Критерии оценивания при ответе на вопросы:

- 85-100 баллов при правильном и полном ответе на два вопроса;
- 65-84 баллов при правильном и полном ответе на один из вопросов и правильном, но не полном ответе на другой из вопросов;
 - 50-64 баллов при правильном и неполном ответе только на один из вопросов;
 - 0-49 баллов при отсутствии правильных ответов на вопросы.

Количество баллов	0-49	50-64	65-84	85-100
Шкала оценивания	неуд	удовл	хорошо	отлично
	Не зачтено		Зачтенс)

Примерный перечень вопросов к экзамену:

1. Основные показатели цилиндра и двигателя.

1621296349

- 2. Действительные циклы поршневых ДВС.
- 3. Индикаторная диаграмма 4-х тактного бензинового двигателя.
- 4. Индикаторная диаграмма 4-х тактного дизеля.
- 5. Индикаторная диаграмма 4-х тактного дизеля с наддувом.
- 6. Процесс наполнения в бензиновых двигателях. Показатели процесса.
- 7. Процесс наполнения в дизелях. Показатели процесса. Факторы, влияющие на про- цесс наполнения.
 - 8. Процесс сжатия. Показатели процесса. Факторы, влияющие на процесс сжатия.
 - 9. Процесс сгорания топлива в бензиновых двигателях.
 - 10. Показатели процесса сгорания топлива в бензиновых двигателях.
 - 11. Влияние конструкционных факторов на процесс сгорания топлива в бензиновых двигателях.
 - 12. Влияние эксплуатационных факторов на процесс сгорания топлива в бензиновых двигателях.
 - 13. Процесс сгорания топлива в дизелях. Показатели процесса сгорания топлива в дизелях.
 - 14. Влияние конструкционных факторов на процесс сгорания топлива в дизелях.
 - 15. Смесеобразование в разделенных камерах сгорания дизелей.
 - 16. Смесеобразование в неразделенных камерах сгорания дизелей.
 - 17. Влияние эксплуатационных факторов на процесс сгорания топлива в дизелях.
 - 18. Процесс выпуска. Параметры процесса.
 - 19. Эффективные показатели работы двигателя.
 - 20. Механические показатели работы двигателя.
 - 21. Индикаторные показатели работы двигателя.
 - 22. Требования, предъявляемые к карбюраторам. Идеальный карбюратор, его характеристика.
 - 23. Главная дозирующая система с эмульсионным колодцем.
 - 24. Система холостого хода.
 - 25. Автономная система холостого хода.
 - 26. Экономайзер принудительного холостого хода.
 - 27. Экономайзер с механическим приводом, с пневмоприводом.
 - 28. Эконостат.
 - 29. Ускорительный насос поршневого типа.
 - 30. Ускорительный насос диафрагменного типа.
 - 31. Пусковые устройства карбюраторов.
 - 32. Многокамерные карбюраторы. Привод заслонок вторичной камеры.
- 33. Распыление топлива в дизеле. Смесеобразование в неразделенных камерах сгорания дизелей. Смесеобразование в разделенных камерах сгорания дизелей.
 - 34. Требования, предъявляемые к топливной аппаратуре дизелей, типы систем питания.
 - 35. Топливный насос высокого давления секционного типа (ТНВД).
 - 36. Топливный насос высокого давления распределительного типа.
 - 37. Методы регулирования цикловой подачи ТНВД.
 - 38. Основные схемы систем впрыска легкого топлива (СВЛТ).
 - 39. Элементы системы подачи легкого топлива и требования, предъявляемые к ним.
 - 40. СВЛТ с плунжерным насосом и механическим регулированием.
 - 41. СВЛТ с непрерывной подачей топлива и пневматическим управлением (К- Дже- троник).
- 42. СВЛТ с циклической подачей и электронным регулированием по расходу воздуха (L-Джетроник).
 - 43. Система впрыска Моно-Джетроник.
 - 44. Газобаллонные установки для сжиженных нефтяных газов.
 - 45. Газобаллонные установки для сжатых природных газов.
 - 46. Газодизельные двигатели.
 - 47. Устройство газовых баллонов в системе питания двигателей, работающих на СПГ.
- 48. Устройство и порядок работы редуктора высокого давления в системе питания двигателей, работающих на СПГ.
- 49. Устройство и порядок работы 1 ступени редуктора давления в системе питания двигателей, работающих на СПГ.
- 50. Устройство и порядок работы 2 ступени редуктора давления в системе питания двигателей, работающих на СПГ.
 - 51. Устройство и порядок работы экономайзера в системе СПГ.
 - 52. Устройство бензиновой системы питания в системе СПГ.
 - 53. Устройство бензиновой системы питания в системе СНГ.

- 54. Устройство и порядок работы 1 ступени редуктора давления в системе СНГ.
- 55. Устройство и порядок работы 2 ступени редуктора давления в системе СНГ.
- 56. Устройство и порядок работы экономайзера в системе СНГ.
- 57. Порядок работы турбокомпрессора.
- 58. Особенности работы и конструкция винтовых турбокомпрессоров.

5.2.3. Методические материалы, определяющие процедуры оценивания знаний, умений , навыков и (или) опыта деятельности, характеризующие этапы формирования компетенций

1. Текущий контроль успеваемости обучающихся, осуществляется в следующем порядке: в конце завершения освоения соответствующей темы обучающиеся, по распоряжению педагогического работника, убирают все личные вещи, электронные средства связи и печатные источники информации.

Для подготовки ответов на вопросы обучающиеся используют чистый лист бумаги любого размера и ручку. На листе бумаги обучающиеся указывают свои фамилию, имя, отчество (при наличии), номер учебной группы и дату проведения текущего контроля успеваемости.

Научно-педагогический работник устно задает два вопроса, которые обучающийся может записать на подготовленный для ответа лист бумаги.

В течение установленного научно-педагогическим работником времени обучающиеся письменно формулируют ответы на заданные вопросы. По истечении указанного времени листы бумаги с подготовленными ответами обучающиеся передают научно-педагогическому работнику для последующего оценивания результатов текущего контроля успеваемости.

При подготовке ответов на вопросы обучающимся запрещается использование любых электронных и печатных источников информации. В случае обнаружения научно-педагогическим работником факта использования обучающимся при подготовке ответов на вопросы указанные источники информации - оценка результатов текущего контроля соответствует 0 баллов и назначается дата повторного прохождения текущего контроля успеваемости.

Текущий контроль успеваемости обучающихся по результатам выполнения лабораторных и (или) практических работ осуществляется в форме отчета, который предоставляется научно-педагогическому работнику на бумажном и (или) электронном носителе. Научно-педагогический работник, после проведения оценочных процедур, имеет право вернуть обучающемуся отчет для последующей корректировки с указанием перечня несоответствий. Обучающийся обязан устранить все указанные несоответствия и направить отчет научно-педагогическому работнику в срок, не превышающий трех учебных дней, следующих за днем проведения текущего контроля успеваемости.

Результаты текущего контроля доводятся до сведения обучающихся в течение трех учебных дней, следующих за днем проведения текущего контроля успеваемости.

Обучающиеся, которые не прошли текущий контроль успеваемости в установленные сроки, обязаны пройти его в срок до начала процедуры промежуточной аттестации по дисциплине в соответствии с расписанием промежуточной аттестации.

Результаты прохождения процедур текущего контроля успеваемости обучающихся учитываются при оценивании результатов промежуточной аттестации обучающихся.

1. Промежуточная аттестация обучающихся проводится после завершения обучения по дисциплине в семестре в соответствии с календарным учебным графиком и расписанием промежуточной аттестации.

Для успешного прохождения процедуры промежуточной аттестации по дисциплине обучающиеся должны:

- 1. получить положительные результаты по всем предусмотренным рабочей программой формам текущего контроля успеваемости;
- 2. получить положительные результаты аттестационного испытания.

Для успешного прохождения аттестационного испытания обучающийся в течение времени, установленного научно-педагогическим работником, осуществляет подготовку ответов на два вопроса, выбранных в случайном порядке.

Для подготовки ответов используется чистый лист бумаги и ручка.

На листе бумаги обучающиеся указывают свои фамилию, имя, отчество (при наличии), номер учебной группы и дату проведения аттестационного испытания.

При подготовке ответов на вопросы обучающимся запрещается использование любых электронных и печатных источников информации.

По истечении указанного времени, листы с подготовленными ответам на вопросы обучающиеся передают научно-педагогическому работнику для последующего оценивания результатов промежуточной аттестации.

В случае обнаружения научно-педагогическим работником факта использования обучающимся при подготовке ответов на вопросы указанные источники информации - оценка результатов промежуточной аттестации соответствует 0 баллов и назначается дата повторного прохождения аттестационного испытания.

Результаты промежуточной аттестации обучающихся размещаются в ЭИОС КузГТУ.

Текущий контроль успеваемости и промежуточная аттестация обучающихся могут быть организованы с использованием ЭИОС КузГТУ, порядок и формы проведения текущего контроля успеваемости и промежуточной аттестации обучающихся при этом не меняется.

6 Учебно-методическое обеспечение

6.1 Основная литература

- 1. Кулаков, А. Т. Особенности конструкции, эксплуатации, обслуживания и ремонта силовых агрегатов грузовых автомобилей: учебное пособие для студентов вузов, обучающихся по специальности "Автомобиле- и тракторостроение" / А. Т. Кулаков, А. С. Денисов, А. А. Макушин. Москва: Инфра-Инженерия, 2013. 448 с. URL: http://biblioclub.ru/index.php?page=book&id=234778. Текст: непосредственный + электронный.
- 2. Кулаков, А. Т. Особенности конструкции, эксплуатации, обслуживания и ремонта силовых агрегатов грузовых автомобилей / А. Т. Кулаков, А. С. Денисов, А. А. Макушин. Москва : Инфра-И н ж е н е р и я , 2013. 448 с. ISBN 9785972900657. URL: http://biblioclub.ru/index.php?page=book_red&id=234778 (дата обращения: 19.09.2021). Текст : электронный.

6.2 Дополнительная литература

- 1. Кобозев, А. К. Силовые агрегаты / А. К. Кобозев, В. И. Швецов; Министерство сельского хозяйства Российской Федерации; Ставоропольский государственный аграрный университет. Ставрополь: Ставропольский государственный аграрный университет (СтГАУ), 2014. 189 с. URL: http://biblioclub.ru/index.php?page=book_red&id=277425 (дата обращения: 04.12.2022). Текст: электронный.
- 2. Епифанов, В. С. Силовые агрегаты / В. С. Епифанов. Москва : Альтаир,МГАВТ, 2012. 116 с. URL: http://biblioclub.ru/index.php?page=book_red&id=429990 (дата обращения: 14.11.2021). Текст : электронный.

6.3 Методическая литература

- 1. Внешний тепловой баланс : методические указания к лабораторной работе по дисциплине "Силовые агрегаты" для обучающихся направления подготовки 23.03.03 "Эксплуатация транспортнотехнологических машин и комплексов" всех форм обучения / Министерство науки и высшего образования Российской Федерации, Кузбасский государственный технический университет им. Т. Ф. Горбачева, Кафедра эксплуатации автомобилей; составитель А. С. Березин. Кемерово : КузГТУ, 2019. 8 с. URL: http://library.kuzstu.ru/meto.php?n=9689 (дата обращения: 04.12.2022). Текст : электронный.
- 2. Индицирование двигателей внутреннего сгорания: методические указания к лабораторной работе по дисциплине "Силовые агрегаты" для обучающихся направления подготовки 23.03.03 "Эксплуатация транспортно-технологических машин и комплексов" всех форм обучения / Министерство науки и высшего образования Российской Федерации, Кузбасский государственный технический университет им. Т. Ф. Горбачева, Кафедра эксплуатации автомобилей; составитель А. С.

52129634

Березин. - Кемерово : КузГТУ, 2019. - 15 с. - URL: http://library.kuzstu.ru/meto.php?n=9692 (дата обращения: 04.12.2022). - Текст : электронный.

3. Механические потери двигателя : методические указания к лабораторной работе по дисциплине "Силовые агрегаты" для обучающихся направления подготовки 23.03.03 "Эксплуатация транспортно-технологических машин и комплексов" всех форм обучения / Министерство науки и высшего образования Российской Федерации, Кузбасский государственный технический университет им. Т. Ф. Горбачева, Кафедра эксплуатации автомобилей ; составитель А. С. Березин. - Кемерово : КузГТУ, 2019. - 13 с. - URL: http://library.kuzstu.ru/meto.php?n=9690 (дата обращения: 04.12.2022). - Текст : электронный.

6.4 Профессиональные базы данных и информационные справочные системы

- 1. Электронная библиотечная система «Лань» http://e.lanbook.com
- 2. Научная электронная библиотека eLIBRARY.RU https://elibrary.ru/projects/subscription/rus-titles-open.asp?

6.5 Периодические издания

- 1. Автомобильный транспорт : научно-технический журнал (печатный)
- 2. За рулем : журнал (печатный)

7 Перечень ресурсов информационно-телекоммуникационной сети «Интернет»

Электронная библиотека КузГТУ. - Текст: электронный // Научно-техническая библиотека Кузбасского государственного технического университета им. Т. Ф. Горбачева : сайт. - Кемерово, 2001 - . - URL: https://elib.kuzstu.ru/. - Текст: электронный.

- b) Портал.КузГТУ: Автоматизированная Информационная Система (АИС): [сайт] / Кузбасский государственный технический университет им. Т. Ф. Горбачева. Кемерово: КузГТУ, [б. г.]. URL: https://portal.kuzstu.ru/. Режим доступа: для авториз. пользователей. Текст: электронный.
- с) Электронное обучение : [сайт] / Кузбасский государственный технический университет им. Т. Ф. Горбачева. Кемерово : КузГТУ, [б. г.]. URL: https://el.kuzstu.ru/. Режим доступа: для авториз. пользователей КузГТУ. Текст: электронный.

8 Методические указания для обучающихся по освоению дисциплины "Силовые агрегаты"

Самостоятельная работа обучающегося является частью его учебной деятельности, объемы самостоятельной работы по каждой дисциплине (модулю) практике, государственной итоговой аттестации, устанавливаются в учебном плане.

Самостоятельная работа по дисциплине (модулю), практике организуется следующим образом:

- 1. До начала освоения дисциплины обучающемуся необходимо ознакомиться с содержанием рабочей программы дисциплины (модуля), программы практики в следующем порядке:
- 1.1 содержание знаний, умений, навыков и (или) опыта профессиональной деятельности, которые будут сформированы в процессе освоения дисциплины (модуля), практики;
- 1.2 содержание конспектов лекций, размещенных в электронной информационной среде КузГТУ в порядке освоения дисциплины, указанном в рабочей программе дисциплины (модуля), практики;
 - 1.3 содержание основной и дополнительной литературы.
- 2. В период освоения дисциплины обучающийся осуществляет самостоятельную работу в следующем порядке:
- 2.1 выполнение практических и (или) лабораторных работы и (или) отчетов в порядке, установленном в рабочей программе дисциплины (модуля), практики;
- 2.2 подготовка к опросам и (или) тестированию в соответствии с порядком, установленном в рабочей программе дисциплины (модуля), практики;
- 2.3 подготовка к промежуточной аттестации в соответствии с порядком, установленном в рабочей программе дисциплины (модуля), практики.
- В случае затруднений, возникших при выполнении самостоятельной работы, обучающемуся необходимо обратиться за консультацией к педагогическому работнику. Периоды проведения консультаций устанавливаются в расписании консультаций.

17

9 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине "Силовые агрегаты", включая перечень программного обеспечения и информационных справочных систем

Для изучения дисциплины может использоваться следующее программное обеспечение:

- 1. Mozilla Firefox
- 2. Google Chrome
- 3. Opera
- 4. Yandex
- 5. 7-zip
- 6. Microsoft Windows
- 7. ESET NOD32 Smart Security Business Edition
- 8. Kaspersky Endpoint Security
- 9. Браузер Спутник

10 Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине "Силовые агрегаты"

Для реализации программы учебной дисциплины предусмотрены специальные помещения:

- 2. Учебные аудитории для проведения занятий лекционного типа, занятий семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации.

11 Иные сведения и (или) материалы

- 1. Образовательный процесс осуществляется с использованием как традиционных так и современных интерактивных технологий.
 - В рамках аудиторных занятий применяются следующие интерактивные методы:
 - 🛮 разбор конкретных примеров;
 - 🛮 мультимедийная презентация.
- 2. Проведение групповых и индивидуальных консультаций осуществляется в соответствии с расписанием консультаций по темам, заявленным в рабочей программе дисциплины, в период освоения дисциплины и перед промежуточной аттестацией с учетом результатов текущего контроля.

18

Список изменений литературы на 01.09.2019

Основная литература

- 1. Кулаков, А. Т. Особенности конструкции, эксплуатации, обслуживания и ремонта силовых агрегатов грузовых автомобилей: учебное пособие для студентов вузов, обучающихся по специальности "Автомобиле- и тракторостроение" / А. Т. Кулаков, А. С. Денисов, А. А. Макушин. Москва: Инфра-Инженерия, 2013. 448 с. URL: http://biblioclub.ru/index.php?page=book&id=234778. Текст: непосредственный + электронный.
- 2. Кулаков, А. Т. Особенности конструкции, эксплуатации, обслуживания и ремонта силовых агрегатов грузовых автомобилей / А. Т. Кулаков, А. С. Денисов, А. А. Макушин. Москва : Инфра-И н ж е н е р и я , 2013. 448 с. ISBN 9785972900657. URL: http://biblioclub.ru/index.php?page=book_red&id=234778 (дата обращения: 01.09.2019). Текст : электронный.

Дополнительная литература

- 1. Транспортная энергетика : учебник для студентов вузов, обучающихся по направлению подготовки бакалавров "Технология транспортных процессов" / под ред. М. Г. Шатрова. Москва : Академия, 2014. 272 с. (Высшее образование : Бакалавриат). Текст : непосредственный.
- 2. Кобозев, А. К. Силовые агрегаты / А. К. Кобозев, В. И. Швецов; Министерство сельского хозяйства Российской Федерации; Ставоропольский государственный аграрный университет. Ставрополь: Ставропольский государственный аграрный университет (СтГАУ), 2014. 189 с. URL: http://biblioclub.ru/index.php?page=book_red&id=277425 (дата обращения: 01.09.2019). Текст: электронный.
- 3. Епифанов, В. С. Силовые агрегаты / В. С. Епифанов. Москва : Альтаир,МГАВТ, 2012. 116 с. URL: http://biblioclub.ru/index.php?page=book_red&id=429990 (дата обращения: 01.09.2019). Текст : электронный.

1296349