минобрнауки россии

федеральное государственное бюджетное образовательное учреждение высшего образования

«Кузбасский государственный технический университет имени Т. Ф. Горбачева»

Институт информационных технологий, машиностроения и автотранспорта

ПОДПИСАНО ЭП КУЗГТУ

Подразделение: институт информационных технологий, машиностроения и автотранспорта
Должность: директор института
Дата: 16.05.2022 21:58:37

Стенин Дмитрий Владимирович

Рабочая программа дисциплины

Теплотехника

Направление подготовки 23.03.03 Эксплуатация транспортно-технологических машин и комплексов Направленность (профиль) 01 Автомобили и автомобильное хозяйство

Присваиваемая квалификация "Бакалавр"

> Формы обучения заочная,очная

Кемерово 2022 г.

1

_

Рабочую программу составил:

ПОДПИСАНО ЭП КУЗГТУ

Подразделение: кафедра теплоэнергетики Должность: старший преподаватель Дата: 14.03.2022 02:49:54

Ушаков Константин Юрьевич

Рабочая программа обсуждена на заседании кафедры теплоэнергетики

Протокол № 3/1 от 14.03.2022

ПОДПИСАНО ЭП КУЗГТУ

Подразделение: кафедра теплоэнергетики Должность: заведующий кафедрой (д.н) Дата: 14.03.2022 20:11:22

Богомолов Александр Романович

Согласовано учебно-методической комиссией по направлению подготовки (специальности) 23.03.03 Эксплуатация транспортно-технологических машин и комплексов

Протокол № 4/1 от 04.04.2022

ПОДПИСАНО ЭП КУЗГТУ

Подразделение: кафедра эксплуатации автомобилей Должность: заведующий кафедрой (к.н)

Дата: 04.04.2022 16:03:12

Кудреватых Андрей Валерьевич

2

1 Перечень планируемых результатов обучения по дисциплине "Теплотехника", соотнесенных с планируемыми результатами освоения образовательной программы

Освоение дисциплины направлено на формирование:

общепрофессиональных компетенций:

ОПК-3 - Способен в сфере своей профессиональной деятельности проводить измерения и наблюдения, обрабатывать и представлять экспериментальные данные и результаты испытаний; универсальных компетенций:

УК-1 - Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач

Результаты обучения по дисциплине определяются индикаторами достижения компетенций

Индикатор(ы) достижения:

проводит поиск и анализ необходимой информации для решения теплотехнических задач пользуется основными приборами для измерений термодинамических параметров и методами анализа эффективности использования теплоты

Результаты обучения по дисциплине:

основные принципы работы тепловых машин и их назначения

-теоретические основы теплотехники, основные законы, управляющие процессами получения и преобразования тепловой энергии, методы анализа эффективности использования теплоты;

осуществлять поиск по различным источникам информации новых разработок тепловых машин и установок;

-производить теплотехнические расчеты промышленных энергетических установок и устройств, анализировать и оптимизировать процессы теплообмена в технологическом оборудовании.

методами оценки эффективности функционирования тепловой машины

-методами решения современных прикладных задач с использованием основных законов теоретических основ теплотехники, навыками применения вычислительной техники в решении теоретических и практических проблем

2 Место дисциплины "Теплотехника" в структуре ОПОП бакалавриата

Для освоения дисциплины необходимы знания умения, навыки и (или) опыт профессиональной деятельности, полученные в рамках изучения следующих дисциплин: Физика.

Дисциплина входит в Блок 1 «Дисциплины (модули)» ОПОП. Цель дисциплины - получениеобучающимися знаний, умений, навыков и (или) опыта профессиональной деятельности, необходимых дляформирования компетенций, указанных в пункте 1.

3 Объем дисциплины "Теплотехника" в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам занятий) и на самостоятельную работу обучающихся

Общая трудоемкость дисциплины "Теплотехника" составляет 4 зачетных единицы, 144 часа.

Форма обучения		чество час	ОВ
		3Ф	О3Ф
Курс 2/Семестр 3			
Всего часов	144	144	
Контактная работа обучающихся с преподавателем (по видам учебных занятий):			
Аудиторная работа			
Лекции	18	6	
Лабораторные занятия	24	6	
Практические занятия			
Внеаудиторная работа			
Индивидуальная работа с преподавателем:			
Консультация и иные виды учебной деятельности			
Самостоятельная работа	66	123	

Форма обучения		Количество часов		
		3Ф	03Ф	
Форма промежуточной аттестации	экзамен /36	экзамен /9		

4 Содержание дисциплины "Теплотехника", структурированное по разделам (темам)

4.1. Лекционные занятия

Раздел дисциплины, темы лекций и их содержание	Трудоем часах	КОСТЬ В
	ОФ	3Ф
Раздел 1. Предмет теплотехника 1.1. Основные понятия и определения. Теплота, работа, рабочее тело.	2	0,5
Раздел 2. Основные законы термодинамики 2.1. I, II, III закон термодинамики.	4	1
Раздел 3. Термодинамические циклы 3.1. Общие понятия. Цикл Карно и его анализ. 3.2. Циклы ДВС и их анализ. 3.3. Холодильные циклы. Тепловой насос.	4	1,5
Раздел 4. Теплообмен 4.1. Виды теплообмена: теплопроводность, теплоотдача, излучение, теплопередача. Основные формулы расчета.	2	1
Раздел 5. Теплообменные аппараты 5.1. Классификация, устройство теплообменных аппаратов. Расчет и выбор теплообменника.	2	1
Раздел 6. Топливо, котельные установки 6.1. Виды топлива, химический состав, основные характеристики. Условия топлива. 6.2. Общее устройство котельных установок, классификация. Тепловой баланс.	2	0,5
Раздел 7. Промышленная ветиляция. 7.1. Вентиляция и отопление производственных помещений	2	0,5
Итого	18	6

4.2. Лабораторные занятия

Наименование работы	Трудоемкость в часах	
	ОФ	3Ф
ЛР №1 Изучение зависимости давления воды и насыщенного водяного пара от температуры	4	1
ЛР №2 Определение коэффициента теплопроводности твердого материала методом цилиндрического слоя	4	1
ЛР №3 Расчет и анализ цикла холодильной машины	4	1
ЛР №4 Сравнение эффективности различных теоретических циклов двигателей внутреннего сгорания	4	1

ЛР №5 Влияние характеристик теоретических циклов газотурбинных установок на термический КПД цикла	4	1
ЛР №6 Изучение процесса теплообмена в теплообменнике типа «труба в трубе»	4	1
Итого	24	6

4.3 Самостоятельная работа студента и перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

Вид СРС	Трудоемкость в часах	
	ОФ	3Ф
Подготовка отчетов к лабораторным работам	20	40
Подготовка ответов на контрольные вопросы к лабораторным работам	20	40
Изучение теоретического материала для теститрования	26	43
Итого	66	123

5 Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине "Теплотехника"

Дисциплина направлена на формирование следующих компетенций выпускника:

Форма (ы)	Компетенции,	Индикатор(ы)	Результаты обучения	Уровень
текущего	формируемые в	достижения	по дисциплине	
контроля	результате	компетенции	(модулю)	
	освоения			
	дисциплины			
	(модуля)			

3/0

Отчет по	ОПК-3;	Пользуется основными	Знать: -теоретические	Высокий
			основы теплотехники,	
работе,		измерений	основные законы,	средний
тестирование,		термодинамических		
т.п. в		параметров и методами		
соответствии с		анализа эффективности		
рабочей		использования теплоты.		
программой		Проводит поиск и анализ	_	
1 1		необходимой	эффективности	
		информации для решения		
		_ = =	-основные принципы	:
			работы тепловых машин	
			и их назначения. <u>Уметь:</u>	
			производить	
			теплотехнические	I .
			расчеты промышленных	
			энергетических	
			установок и устройств,	
			анализировать и	
			оптимизировать	
			процессы теплообмена в	:
			технологическом	
			оборудовании;	
			-осуществлять поиск по	I .
			различным источникам	
			информации новых	
			разработок тепловых	:
			машин и установок.	
			<u>Владеть:</u> - методами	
			решения современных	
			прикладных задач с	
			использованием	
			основных законов	
			теоретических основ	
			теплотехники, навыками	
			применения	
			вычислительной	
			техники в решении	
			теоретических и практических проблем;	1
			практических проолем; -методами оценки	
			-методами оценки эффективности	1
			јэффективности функционирования	.[
			функционирования Тепловой машины;	1
D			•	
высокии урово	ень достижения	и компетенции - комп	етенция сформирована	частично,

рекомендованные оценки: отлично, хорошо, зачтено.

Средний уровень достижения компетенции - компетенция сформирована частично, рекомендованные оценки: хорошо, удовлетворительно, зачтено.

Низкий уровень достижения компетенции - компетенция не сформирована частично, оценивается неудовлетворительно или не зачтено.

5.2. Контрольные задания или иные материалы

Текущий контроль успеваемости и аттестационные испытания обучающихся могут быть организованы с использованием ресурсов ЭИОС КузГТУ. Полный перечень оценочных материалов расположен в ЭИОС КузГТУ.: https://el.kuzstu.ru/login/index.php.

Текущий контроль успеваемости и аттестационные испытания могут проводиться в письменной и (или) устной, и (или) электронной форме.

5.2.1. Оценочные средства при текущем контроле

Оценочные средства по лабораторным работам

Контрольные вопросы для защиты лабораторных работ № 1-6

Контрольные вопросы к лабораторной работе №1

- 1. Что называется парообразованием, испарением и кипением?
- 2. Дать понятие конденсации, плавления, затвердевания, сублимации, десублимации.
- 3. Какой пар называется влажным насыщенным, сухим насыщенным, перегретым?
- 4. Что такое степень сухости и степень влажности, их взаимосвязь?
- 5. При каких условиях происходит процесс кипения?
- 6. Критическая точка воды, параметры.
- 7. Что такое теплота парообразования, как рассчитывается, единицы измерения?
- 8. Правило фаз Гиббса, привести пример.
- 9. Т-Ѕ диаграмма для воды и водяного пара (качественно).
- 10. *i-S* диаграмма воды и водяного пара.
- 11. Раскройте связь абсолютного давления и температуры кипения жидкости.

Контрольные вопросы к лабораторной работе №2

- 1. Что такое коэффициент теплопроводности?
- 2. Дифференциальное уравнение теплопроводности.
- 3. Условие однозначности для процесса теплопроводности.
- 4. Граничные условия, способы их задания.
- 5. Уравнения для определения теплового потока через плоскую стенку.
- 6. Тепловая проводимость и термическое сопротивление стенки.

Контрольные вопросы к лабораторной работе №3

- 1. Что такое обратный термодинамический цикл?
- 2. Расскажите про холодильный коэффициент.
- 3. Что такое хладагент, какие хладагенты существуют?
- 4. Изобразите цикл теплового насоса, отопительный коэффициент.
- 5. Комбинированная машина по совместной выработке тепла и холода, коэффициент трансформации тепла.
- 6. На чем основан принцип действия следующих видов холодильных установок: воздушная, пароэжекторная, абсорбционная, парокомпрессионная.
- 7. Как влияют основные параметры цикла на эффективность работы.
- 8. Среднеинтегральная температура.
- 9. Что такое холодопроизводительность?

Контрольные вопросы к лабораторной работе №4

- 1. Основные характеристики теоретических циклов ДВС
- 2.Принципы работы ДВС.
- 3.Достоинства и недостатки ДВС.
- 4.Области применения.
- 5.Основные характеристики термодинамических циклов ДВС.
- 6.Как определить максимальные значения температуры и давления в цикле?
- 7.Выведите формулу для расчета термического КПД цикла.
- 8. Как влияют характеристики цикла на максимальную температуру в цикле?
- 9. Что такое индикаторная диаграмма?
- 10. Рассчитайте приближенно количество подведенной теплоты по диаграмме цикла, количество отведенной теплоты, полезную работу.

Контрольные вопросы к лабораторной работе №5

- 1. Что такое термодинамический процесс, цикл?
- 2.Принципы работы ГТУ.
- 3.Достоинства и недостатки ГТУ.
- 4.Области применения.
- 5.Основные характеристики термодинамических циклов ГТУ.
- 6.Как определить максимальные значения температуры и давления в цикле?
- 7.Выведите формулу для расчета термического КПД цикла.
- 8. Как влияют характеристики цикла на максимальную тем-пературу в цикле?
- 9. Рассчитайте приближенно количество подведенной теплоты, количество отведенной теплоты, полезную работу по диаграмме цикла.

Контрольные вопросы к лабораторной работе №6

1. Расчет теплопередачи через цилиндрическую стенку при граничных условиях третьего рода.

- 2. Основные типы теплообменных аппаратов. Достоинства и недостатки теплообменника «труба в трубе».
 - 3. Движущая сила процесса теплопередачи, термическое сопротивление процессу.
- 4. Расчет среднего температурного напора между теплоносителями при прямотоке, противотоке, перекрестном и смешанном токе.
- 5. Как выбирается определяющая температура, что такое определяющий размер? Определите эквивалентный диаметр в кольцевом канале.
 - 6. Что является движущей силой при свободной конвекции?
 - 7. Как влияют теплофизические свойства теплоносителей на теплопередачу?
- 8. Назовите основное уравнение теплопередачи, поясните. Дайте определение коэффициенту теплопередачи.
 - 9. Смысл критерия Нуссельта.
 - 10. Что характеризует критерий Прандтля?

При проведении защиты лабораторной работы обучающимся будет задано несколько вопросов, на которые они должны дать ответы. Критерии оценивания:

- 100 баллов при правильном и полном ответе на вопросы;
- 75...99 баллов при правильном и полном ответе на часть вопросов и правильном, но не полном ответе на другую часть вопросов;
- 50...74 баллов при правильном и неполном ответе на вопросы или правильном и полном ответе только на часть вопросов;
 - 25...49 баллов при правильном и неполном ответе только на один из вопросов;
 - 0...24 баллов при отсутствии правильных ответов на вопросы.

Количество баллов	024	2549	5064	6574	7599	100
Шкала оценивания	Не зачтено		Зачтено			

Требования к отчету по лабораторным работам №1-6

Отчет оформляется на листах формата А4 с рамками и должен содержать:

- 1) титульный лист установленной формы;
- 2) кратко изложенные теоретические положения;
- 3) принципиальную схему лабораторного стенда с основными техническими параметрами;
- 4) таблицу измеренных и рассчитанных величин;
- 5) обработку результатов;
- 6) графические зависимости при необходимости;
- 7) выводы по работе.

Чертежи, схемы и таблицу следует оформлять в соответствии с действующими стандартами и ГОСТами.

Критерии оценивания:

- в отчете содержатся все требуемые элементы, и они соответствуют лабораторной работе 65...100 баллов;
- в отчете содержатся все требуемые элементы, однако они не соответствуют лабораторной работе, или представлены не все требуемые элементы или отчет не представлен 0...64 баллов.

Количество баллов	064	65100
Шкала оценивания	Не зачтено	Зачтено

Оценочные средства по теоретическому материалу

Тестирование по вопросам

При проведении текущего контроля обучающимся необходимо ответить на тестирования по каждому разделу / теме/... Тестирование может быть организовано с использованием ресурсов ЭИОС КузГТУ.

Тестирование по вопросам

Проверка самостоятельного изучения теоретического материала осуществляется тестированием по вопросам. Примеры вопросов на тестирование:

<u>Текущий опрос Т1:</u>

- 1. Что изучает теплотехника?
- 2.Что означает понятие термодинамическая система? Приведите характеристики термодинамической системы.
- 3.Перечислите термодинамические параметры состояния рабочего тела? Напишите размерность основных параметров состояния рабочего тела.
 - 4. Перечислите разновидности давлений. Как они связаны между собой?
 - 5. Какие вы знаете температурные шкалы, и какая между ними существует связь?

Текущий опрос Т2:

- 1. Приведите формулировку и математическую запись первого закона термодинамики.
- 2. Приведите формулировку и математическую запись второго закона термодинамики.
- 3. Приведите формулировку и математическую запись третьего закона термодинамики.
- 4. Объясните понятие эксергия.
- 5. Объясните понятие энтальпия. Представьте математическую формулировку первого закона термодинамики, используя энтальпию.
 - 6. Что представляет собой внутренняя энергия тела?
 - 7. Объясните понятие теплоемкость. Виды теплоемкостей, размерности.

Текущий опрос Т3:

- 1. Почему в диапазоне температур T_{max} и T_{min} не существует термодинамический цикл с термическим КПД большим, чем у цикла Карно?
 - 2. Почему нельзя создать тепловой двигатель с термическим КПД равным 1?
 - 3. Почему нельзя создать вечный двигатель 1 и 2 рода?
 - 4. Опишите циклы ДВС Отто, Дизеля, Тринклера.
- 5. Изобразите циклы двигателя Отто, Дизеля, Тринклера в диаграммах P V и T S. Напишите формулу для определения термического КПД этих циклов. Дайте необходимые пояснения.
 - 6. Классификация холодильных установок.
 - 7. Что такое холодильный коэффициент? Как он рассчитывается?
 - 8. Опишите работу парокомпрессионной холодильной установки.
 - 9. Изобразите цикл парокомпрессионной холодильной установки в T-s диаграмме.
 - 10. Что такое тепловой насос? Где он применяется?
 - 11. Что такое отопительный коэффициент? Как он рассчитывается?

Текущий опрос Т4:

- 1. Перечислите основные разновидности теплообмена.
- 2. Что называется сложным теплообменом?
- 3. Что такое градиент температуры?
- 4. Напишите и поясните формулировку закона Фурье в математической форме записи.
- 5. Напишите и поясните дифференциальное уравнение теплопроводности.
- 6. Перечислите способы задания граничных условий.
- 7. Перечислите условия однозначности для процессов теплообмена.
- 8. Закон Ньютона-Рихмана.
- 9. Напишите уравнения по определения количества теплоты при передаче теплоты через плоскую и цилиндрическую стенку для граничных условий третьего рода.
- 10. Перечислите основные законы излучения тел. Запишите математическую формулировку закона Стефана-Больцмана.

Текущий опрос Т5:

- 1. Что называется теплообменным аппаратом?
- 2. Классификация теплообменных аппаратов.
- 3. Что такое водяной эквивалент?
- 4. Изобразите схемы изменения температур при прямотоке и противотоке.
- 5. Как определяется среднелогарифмический температурный напор?
- 6. Нарисуйте схему и расскажите принцип работы кожухотрубчатого теплообменника.
- 7. Нарисуйте схему и расскажите принцип работы пластинчатого теплообменника.

Текущий опрос Т6:

- 1. Что такое топливо?
- 2. Какие виды топлива вы знаете? Охарактеризуйте их?
- 3. Что такое условное топливо и где оно применяется?

1632370171

- 4. Как можно определить теплоту сгорания топлива?
- 5. Аналитический расчет теплоты сгорания органического топлива.
- 6. Охарактеризуйте составляющие теплового баланса котельного агрегата.
- 7. Перечислите составляющие компоненты котельных агрегатов.
- 8. Охарактеризуйте элементный и технический состав органического топлива.

Текущий опрос Т7:

- 1. Что такое воздухообмен и кратность вентиляции?
- 2. Приведите классификацию систем вентиляции.
- 3. Назовите основные конструктивные элементы приточных и вытяжных систем вентиляции.
- 4. Расскажите порядок расчета калориферов.

Требования к результатам тестирования

При проведении тестирования по усвоению теоретического материала студенты должны выбрать правильные ответы. Критерии оценивания:

- 100 баллов при правильном и полном ответе на все вопросы;
- 75...99 баллов при правильном ответе на 75% вопросов;
- 65...74 баллов при правильном ответе на 65% вопросов
- 50...64 баллов при правильном ответе 50 % вопросов;
- 25...49 баллов при правильном ответе на 25 % вопросов;
- 0...24 баллов при отсутствии правильных ответов на вопросы.

Количество баллов	024	2549	5064	6574	7599	100
Шкала оценивания	Не зачтено		Зачтено			

Требования к результатам тестирования

При проведении тестирования по усвоению теоретического материала студенты должны выбрать правильные ответы. Критерии оценивания:

- 100 баллов при правильном и полном ответе на все вопросы;
- 75...99 баллов при правильном ответе на 75% вопросов;
- 65...74 баллов при правильном ответе на 65% вопросов
- 50...64 баллов при правильном ответе 50 % вопросов;
- 25...49 баллов при правильном ответе на 25 % вопросов;
- 0...24 баллов при отсутствии правильных ответов на вопросы.

Количество баллов	024	2549	5064	6574	7599	100
Шкала оценивания	Не зачтено		Зачтено			

и т.п. в соответствии с рабочей программой..

5.2.2Требования к промежуточной аттестации обучающихся

Формой промежуточной аттестации является экзамен, в процессе которого определяется сформированность обозначенных в рабочей программе компетенций.

Инструментом измерения сформированности компетенций являются:

- зачтенные отчеты обучающихся по лабораторным и(или) практическим работам;
- ответы обучающихся на вопросы во время опроса.

и т.п. в соответствии с рабочей программой..

При проведении промежуточного контроля обучающийся отвечает на 2 вопроса выбранных случайным образом, тестированиии т.п. в соответствии с рабочей программой... Опрос может проводиться в письменной и (или) устной, и (или) электронной форме.

Вопросы к экзамену

- 1. Основные понятия и определения технической термодинамики.
- 2. Законы термодинамики.
- 3. Параметры и функции состояния рабочего тела. Приборы для измерения параметров состояния рабочего тела.
- 4. Основные термодинамические процессы. Термодинамический цикл.

53237017:

- 5. T-S, i-S диаграммы воды и водяного пара. Процессы изменения состояния водяного пара.
- 6. Функции процесса. Графические изображение тепла и работы.
- 7. Сжатие газа в компрессоре. Схема двухступенчатого компрессора. Диаграмма процесса сжатия.
- 8. Циклы тепловых двигателей и установок. Обобщенный цикл ТД: параметры и диаграмма.
- 9. Циклы ДВС их особенности и отличие. Графическое изображение циклов, расчет и анализ цикла ПВС.
- 10. Цикл Карно. Практическая значимость цикла.
- 11. Холодильный цикл. Принцип работы холодильной установки.
- 12. ГТУ. Принцип работы. Диаграммы циклов.
- 13. Виды теплообмена. Расчетные формулы.
- 14. Теплообменные аппараты. Классификация. Алгоритм расчета и выбора.
- 15. Топливо. Классификация. Осевые характеристики топлива. Условное топливо.
- 16. Теплоносители. Классификация, область применения.
- 17. Котельные установки. Классификация. Составные элементы котлоагрегата.
- 18. Теплопотребители. Классификация.
- 19. Расчет потребности тепла теплопотребителями и в целом предприятием.
- 20. Тепловой баланс котлоагрегата. Алгоритм расчета.
- 21. Системы теплоснабжения. Классификация.
- 22. Вентиляция. Назначение. Классификация.
- 23. Параметры, характеризующие эффективность и экономичность работы двигателей. Индиткаторная мощность. Эффективная мощность и давление. Эффективный и индикаторный КПД.
- 24. Энергетический и эксергетический балансы двигателей.

При проведении промежуточной аттестации обучающимся будет задано два вопроса, на которые они должны дать ответы. Критерии оценивания:

- 100 баллов при правильном и полном ответе на два вопроса;
- 65...99 баллов при правильном и полном ответе на один из вопросов и правильном, но не полном ответе на другой из вопросов;
- 50...64 баллов при правильном и неполном ответе на два вопроса или правильном и полном ответе только на один из вопросов;
 - 25...49 баллов при правильном и неполном ответе только на один из вопросов;
 - 0...24 баллов при отсутствии правильных ответов на вопросы.

Количество баллов		2549	5064	6599	100
Шкала оценивания	Не зачтено			Зачтено	

5.2.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующие этапы формирования компетенций.

1. Текущий контроль успеваемости обучающихся, осуществляется в следующем порядке: в конце завершения освоения соответствующей темы обучающиеся, по распоряжению педагогического работника, убирают все личные вещи, электронные средства связи и печатные источники информации.

Для подготовки ответов на вопросы обучающиеся используют чистый лист бумаги любого размера и ручку. На листе бумаги обучающиеся указывают свои фамилию, имя, отчество (при наличии), номер учебной группы и дату проведения текущего контроля успеваемости.

Научно-педагогический работник устно задает два вопроса, которые обучающийся может записать на подготовленный для ответа лист бумаги.

В течение установленного научно-педагогическим работником времени обучающиеся письменно формулируют ответы на заданные вопросы. По истечении указанного времени листы бумаги с подготовленными ответами обучающиеся передают научно-педагогическому работнику для последующего оценивания результатов текущего контроля успеваемости.

При подготовке ответов на вопросы обучающимся запрещается использование любых электронных и печатных источников информации. В случае обнаружения научно-педагогическим работником факта использования обучающимся при подготовке ответов на вопросы указанные источники информации - оценка результатов текущего контроля соответствует 0 баллов и назначается

63237017

дата повторного прохождения текущего контроля успеваемости.

Текущий контроль успеваемости обучающихся по результатам выполнения лабораторных и (или) практических работ осуществляется в форме отчета, который предоставляется научно-педагогическому работнику на бумажном и (или) электронном носителе. Научно-педагогический работник, после проведения оценочных процедур, имеет право вернуть обучающемуся отчет для последующей корректировки с указанием перечня несоответствий. Обучающийся обязан устранить все указанные несоответствия и направить отчет научно-педагогическому работнику в срок, не превышающий трех учебных дней, следующих за днем проведения текущего контроля успеваемости.

Результаты текущего контроля доводятся до сведения обучающихся в течение трех учебных дней, следующих за днем проведения текущего контроля успеваемости.

Обучающиеся, которые не прошли текущий контроль успеваемости в установленные сроки, обязаны пройти его в срок до начала процедуры промежуточной аттестации по дисциплине в соответствии с расписанием промежуточной аттестации.

Результаты прохождения процедур текущего контроля успеваемости обучающихся учитываются при оценивании результатов промежуточной аттестации обучающихся.

1. Промежуточная аттестация обучающихся проводится после завершения обучения по дисциплине в семестре в соответствии с календарным учебным графиком и расписанием промежуточной аттестации.

Для успешного прохождения процедуры промежуточной аттестации по дисциплине обучающиеся должны:

- 1. получить положительные результаты по всем предусмотренным рабочей программой формам текущего контроля успеваемости;
- 2. получить положительные результаты аттестационного испытания.

Для успешного прохождения аттестационного испытания обучающийся в течение времени, установленного научно-педагогическим работником, осуществляет подготовку ответов на два вопроса, выбранных в случайном порядке.

Для подготовки ответов используется чистый лист бумаги и ручка.

На листе бумаги обучающиеся указывают свои фамилию, имя, отчество (при наличии), номер учебной группы и дату проведения аттестационного испытания.

При подготовке ответов на вопросы обучающимся запрещается использование любых электронных и печатных источников информации.

По истечении указанного времени, листы с подготовленными ответам на вопросы обучающиеся передают научно-педагогическому работнику для последующего оценивания результатов промежуточной аттестации.

В случае обнаружения научно-педагогическим работником факта использования обучающимся при подготовке ответов на вопросы указанные источники информации - оценка результатов промежуточной аттестации соответствует 0 баллов и назначается дата повторного прохождения аттестационного испытания.

Результаты промежуточной аттестации обучающихся размещаются в ЭИОС КузГТУ.

Текущий контроль успеваемости и промежуточная аттестация обучающихся могут быть организованы с использованием ЭИОС КузГТУ, порядок и формы проведения текущего контроля успеваемости и промежуточной аттестации обучающихся при этом не меняется.

6 Учебно-методическое обеспечение

6.1 Основная литература

- 1. Теплотехника: учебник для студентов вузов, обучающихся по специальностям направления подготовки "Эксплуатация наземного транспорта и транспортного оборудования" и по направлениям подготовки бакалавров "Эксплуатация транспортных средств" и "Эксплуатация транспортнотехнологических машин и комплексов" / под редакцией М. Г. Шатрова. 3-е изд., стер. Москва: Академия, 2013. 288 с. (Высшее профессиональное образование: Бакалавриат). Текст: непосредственный.
 - 2. Кудинов, И. В. Теоретические основы теплотехники / И. В. Кудинов, Е. В. Стефанюк;

1632370171

Самарский государственный архитектурно-строительный университет. - Самара : Самарский государственный архитектурно-строительный университет, 2013. - 172 с. - ISBN 9785958505548. - URL: http://biblioclub.ru/index.php?page=book_red&id=256110 (дата обращения: 28.05.2019). - Текст : электронный.

6.2 Дополнительная литература

- 1. Кудинов, И. В. Теоретические основы теплотехники / И. В. Кудинов, Е. В. Стефанюк; Самарский государственный архитектурно-строительный университет. Самара : Самарский государственный архитектурно-строительный университет, 2013. 422 с. ISBN 9785958505555. URL: http://biblioclub.ru/index.php?page=book_red&id=256111 (дата обращения: 28.05.2019). Текст : электронный.
- 2. Основы теплотехники и энергосбережение: учебное пособие [для студентов 170500 (240801) "Машины и аппараты химических производств" и 100700 (140104) "Промышленная теплоэнергетика"] / П. Т. Петрик [и др.]; ГОУ ВПО "Кузбас. гос. техн. ун-т", Каф. процессов, машин и аппаратов хим. пр-в. Кемерово : Издательство КузГТУ, 2006. 244 с. URL: http://library.kuzstu.ru/meto.php?n=90128&type=utchposob:common. Текст : непосредственный + электронный.

6.3 Методическая литература

- 1. Изучение зависимости давления воды и насыщенного водяного пара от температуры : методические указания к лабораторной работе по дисциплине «Тепломассообмен» для студентов направления 13.03.01 «Теплоэнергетика и теплотехника», по дисциплине «Теплотехника» для студентов направления 23.03.03 «Эксплуатация транспортно-технологических машин и комплексов», профиль «Автомобили и автомобильное хозяйство», и специальности 21.05.04.00 «Горное дело», специализация 21.05.04.10 «Электрификация и автоматизация горного производства», всех форм обучения / ФГБОУ ВО "Кузбас. гос. техн. ун-т им. Т. Ф. Горбачева", Каф. теплоэнергетики ; сост.: Е. Ю. Темникова, В. Н. Сливной, С. А. Шевырев. Кемерово : КузГТУ, 2016. 6 с. URL: http://library.kuzstu.ru/meto.php?n=8722. Текст : непосредственный + электронный.
- 2. Определение коэффициента теплопроводности твердого материала методом цилиндрического слоя: методические указания к лабораторной работе по дисциплине «Тепломассообмен» для студентов направления 13.03.01 «Теплоэнергетика и теплотехника», по дисциплине «Теплотехника» для студентов направления 23.03.03 «Эксплуатация транспортно-технологических машин и комплексов», профиль «Автомобили и автомобильное хозяйство» и специальности 21.05.04.00 «Горное дело», специализация 21.05.04.10 «Электрификация и автоматизация горного производства», всех форм обучения / ФГБОУ ВО "Кузбас. гос. техн. ун-т им. Т. Ф. Горбачева", Каф. теплоэнергетики; сост.: Е. Ю. Темникова, В. Н. Сливной, С. А. Шевырев. Кемерово: КузГТУ, 2016. 9 с. URL: http://library.kuzstu.ru/meto.php?n=8724. Текст: непосредственный + электронный.
- 3. Изучение процесса теплообмена в теплообменнике типа «труба в трубе» : методические указания к лабораторной работе по дисциплине «Тепломассообмен» для студентов направления 13.03.01 «Теплоэнергетика и теплотехника», по дисциплине «Теплотехника» для студентов направления 23.03.03 «Эксплуатация транспортно-технологических машин и комплексов», профиль «Автомобили и автомобильное хозяйство», и специальности 21.05.04.00 «Горное дело», специализация 21.05.04.10 «Электрификация и автоматизация горного производства», всех форм обучения / ФГБОУ ВО "Кузбас. гос. техн. ун-т им. Т. Ф. Горбачева", Каф. теплоэнергетики ; сост.: Е. Ю. Темникова, А. Р. Богомолов, С. А. Шевырев. Кемерово : КузГТУ, 2016. 11 с. URL: http://library.kuzstu.ru/meto.php?n=8725. Текст : непосредственный + электронный.
- 4. Расчет и анализ цикла холодильной машины : методические указания к лабораторной работе по дисциплине «Тепломассообмен» для студентов направления 13.03.01 «Теплоэнергетика и теплотехника», по дисциплине «Теплотехника» для студентов направления 23.03.03 «Эксплуатация транспортно-технологических машин и комплексов», профиль «Автомобили и автомобильное хозяйство», и специальности 21.05.04.00 «Горное дело», специализация 21.05.04.10 «Электрификация и автоматизация горного производства», всех форм обучения / ФГБОУ ВО "Кузбас. гос. техн. ун-т им. Т. Ф. Горбачева", Каф. теплоэнергетики ; сост.: Е. Ю. Темникова, А. Р. Богомолов, С. А. Шевырев. Кемерово : КузГТУ, 2016. 11 с. URL: http://library.kuzstu.ru/meto.php?n=8726. Текст : непосредственный + электронный.
 - 5. Дворовенко, И. В. Сравнение эффективности различных теоретических циклов двигателей

632370171

внутреннего сгорания: методические указания к выполнению лабораторной работы по дисциплине «Теплотехника» для студентов направления подготовки 23.03.03 «Эксплуатация транспортнотехнологических машин и комплексов» всех форм обучения / И. В. Дворовенко, И. И. Дворовенко ; ФГБОУ ВО "Кузбас. гос. техн. ун-т им. Т. Ф. Горбачева", Каф. теплоэнергетики. - Кемерово : КузГТУ, 2016. - 10 с. - URL: http://library.kuzstu.ru/meto.php?n=1823 (дата обращения: 28.05.2019). - Текст : электронный.

- 6. Дворовенко, И. В. Влияние характеристик теоретических циклов газотурбинных установок на термический КПД цикла: методические указания к выполнению лабораторной работы по дисциплине «Теплотехника» для студентов направления подготовки 23.03.03 «Эксплуатация транспортнотехнологических машин и комплексов» всех форм обучения / И. В. Дворовенко, И. И. Дворовенко ; ФГБОУ ВО "Кузбас. гос. техн. ун-т им. Т. Ф. Горбачева", Каф. теплоэнергетики. - Кемерово : КузГТУ, 2016. - 9 с. - URL: http://library.kuzstu.ru/meto.php?n=1844 (дата обращения: 28.05.2019). - Текст : электронный.
- 7. Дворовенко, И. В. Влияние характеристик теоретических циклов двигателей внутреннего сгорания на термический КПД цикла: методические указания к выполнению лабораторной работы по дисциплине «Теплотехника» для студентов направления подготовки 23.03.03 «Эксплуатация транспортно-технологических машин и комплексов» всех форм обучения / И. В. Дворовенко, И. И. Дворовенко ; ФГБОУ ВО "Кузбас. гос. техн. ун-т им. Т. Ф. Горбачева", Каф. теплоэнергетики. - Кемерово : KyзГТУ, 2016. - 9 c. - URL: http://library.kuzstu.ru/meto.php?n=1870 (дата обращения: 28.05.2019). -Текст: электронный.
- 8. Дворовенко, И. В. Влияние характеристик теоретического цикла Стирлинга на термический КПД цикла : методические указания к выполнению лабораторной работы по дисциплине «Теплотехника» для студентов направления подготовки 23.03.03 «Эксплуатация транспортнотехнологических машин и комплексов» всех форм обучения / И. В. Дворовенко, И. И. Дворовенко ; ФГБОУ ВО "Кузбас. гос. техн. ун-т им. Т. Ф. Горбачева", Каф. теплоэнергетики. - Кемерово : КузГТУ, 2016. - 8 с. - URL: http://library.kuzstu.ru/meto.php?n=1903 (дата обращения: 28.05.2019). - Текст : электронный.
- 9. Дворовенко, И. В. Сравнение эффективности работы различных теоретических циклов двигателей внутреннего сгорания и газотурбинных установок : методические указания к выполнению лабораторной работы по дисциплине «Теплотехника» для студентов направления подготовки 23.03.03 «Эксплуатация транспортно-технологических машин и комплексов» всех форм обучения / И. В. Дворовенко, И. И. Дворовенко ; ФГБОУ ВО "Кузбас. гос. техн. ун-т им. Т. Ф. Горбачева", Каф. теплоэнергетики. - Кемерово : Ky3ГТУ, 2016. - 13 c. - URL: http://library.kuzstu.ru/meto.php?n=1862 (дата обращения: 28.05.2019). - Текст : электронный.
- 10. Дворовенко, И. В. Сравнение эффективности различных теоретических циклов газотурбинных установок : методические указания к выполнению лабораторной работы по дисциплине «Теплотехника» для студентов направления подготовки 23.03.03 «Эксплуатация транспортнотехнологических машин и комплексов» всех форм обучения / И. В. Дворовенко, И. И. Дворовенко ; ФГБОУ ВО "Кузбас. гос. техн. ун-т им. Т. Ф. Горбачева", Каф. теплоэнергетики. - Кемерово : КузГТУ, 2016. - 9 с. - URL: http://library.kuzstu.ru/meto.php?n=1872 (дата обращения: 28.05.2019). - Текст : электронный.
- 11. Теплотехника: методические указания к самостоятельной работе для студентов направления подготовки 23.03.03 «Эксплуатация транспортно-технологических машин» всех форм обучения / ФГБОУ ВО "Кузбас. гос. техн. ун-т им. Т. Ф. Горбачева", Каф. теплоэнергетики ; сост: С. А. Шевырев, К. Ю. Ушаков. - Кемерово : КузГТУ, 2017. - 23 с. - URL: http://library.kuzstu.ru/meto.php?n=1036 (дата обращения: 28.05.2019). - Текст : электронный.

6.4 Профессиональные базы данных и информационные справочные системы

- 1. Электронная библиотечная система «Университетская библиотека онлайн» http://biblioclub.ru/
- 2. Электронная библиотечная система «Лань» http://e.lanbook.com
- Электронная библиотека КузГТУ https://elib.kuzstu.ru/index.php?option=com_content&view=article&id=230&Itemid=229
 - 4. Национальная электронная библиотека https://rusneb.ru/

6.5 Периодические издания

1. Автомобильная промышленность : научно-технический журнал (печатный)

2. Автомобильный транспорт: научно-технический журнал (печатный)

7 Перечень ресурсов информационно-телекоммуникационной сети «Интернет»

ЭИОС КузГТУ:

- а) Электронная библиотека КузГТУ. Текст: электронный // Научно-техническая библиотекаКузбасского государственного технического университета им. Т. Ф. Горбачева : сайт. Кемерово, 2001 . -URL: https://elib.kuzstu.ru/. Текст: электронный.
- b) Портал.КузГТУ: Автоматизированная Информационная Система (АИС): [сайт] / Кузбасскийгосударственный технический университет им. Т. Ф. Горбачева. Кемерово: КузГТУ, [б. г.]. URL:https://portal.kuzstu.ru/. Режим доступа: для авториз. пользователей. Текст: электронный.
- с) Электронное обучение : [сайт] / Кузбасский государственный технический университет им. Т. Ф.Горбачева. Кемерово : КузГТУ, [б. г.]. URL: https://el.kuzstu.ru/. Режим доступа: для авториз.пользователей КузГТУ. Текст: электронный.

8 Методические указания для обучающихся по освоению дисциплины "Теплотехника"

Самостоятельная работа обучающегося является частью его учебной деятельности, объемы самостоятельной работы по каждой дисциплине (модулю) практике, государственной итоговой аттестации, устанавливаются в учебном плане.

Самостоятельная работа по дисциплине (модулю), практике организуется следующим образом:

- 1. До начала освоения дисциплины обучающемуся необходимо ознакомиться с содержанием рабочей программы дисциплины (модуля), программы практики в следующем порядке:
- 1.1 содержание знаний, умений, навыков и (или) опыта профессиональной деятельности, которые будут сформированы в процессе освоения дисциплины (модуля), практики;
- 1.2 содержание конспектов лекций, размещенных в электронной информационной среде КузГТУ в порядке освоения дисциплины, указанном в рабочей программе дисциплины (модуля), практики;
 - 1.3 содержание основной и дополнительной литературы.
- 2. В период освоения дисциплины обучающийся осуществляет самостоятельную работу в следующем порядке:
- 2.1 выполнение практических и (или) лабораторных работы и (или) отчетов в порядке, установленном в рабочей программе дисциплины (модуля), практики;
- 2.2 подготовка к опросам и (или) тестированию в соответствии с порядком, установленном в рабочей программе дисциплины (модуля), практики;
- 2.3 подготовка к промежуточной аттестации в соответствии с порядком, установленном в рабочей программе дисциплины (модуля), практики.
- В случае затруднений, возникших при выполнении самостоятельной работы, обучающемуся необходимо обратиться за консультацией к педагогическому работнику. Периоды проведения консультаций устанавливаются в расписании консультаций.

9 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине "Теплотехника", включая перечень программного обеспечения и информационных справочных систем

Для изучения дисциплины может использоваться следующее программное обеспечение:

- 1. Mozilla Firefox
- 2. Google Chrome
- 3. 7-zip
- 4. Microsoft Windows
- 5. ESET NOD32 Smart Security Business Edition
- 6. Kaspersky Endpoint Security
- 7. Браузер Спутник

10 Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине "Теплотехника"

Для реализации программы учебной дисциплины предусмотрены специальные помещения:

1. Помещения для самостоятельной работы обучающихсядолжны оснащенные компьютерной техникой с возможностью подключения к сети

"Интернет" обеспечением доступа к электронной информационно-образовательной среде Организации.

2. Учебные аудитории для проведения занятий лекционного типа, занятий семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации.

11 Иные сведения и (или) материалы

- 1. Образовательный процесс осуществляется с использованием как традиционных так и современных интерактивных технологий.
 - В рамках аудиторных занятий применяются следующие интерактивные методы:
 - 🛮 разбор конкретных примеров;
 - 🛮 мультимедийная презентация.
- 2. Проведение групповых и индивидуальных консультаций осуществляется в соответствии с расписанием консультаций по темам, заявленным в рабочей программе дисциплины, в период освоения дисциплины и перед промежуточной аттестацией с учетом результатов текущего контроля.

3/01/

Список изменений литературы на 01.09.2019

Основная литература

- 1. Теплотехника: учебник для студентов вузов, обучающихся по специальностям направления подготовки "Эксплуатация наземного транспорта и транспортного оборудования" и по направлениям подготовки бакалавров "Эксплуатация транспортных средств" и "Эксплуатация транспортнотехнологических машин и комплексов" / под редакцией М. Г. Шатрова. 3-е изд., стер. Москва: Академия, 2013. 288 с. (Высшее профессиональное образование: Бакалавриат). Текст: непосредственный.
- 2. Кудинов, И. В. Теоретические основы теплотехники / И. В. Кудинов, Е. В. Стефанюк; Самарский государственный архитектурно-строительный университет. Самара: Самарский государственный архитектурно-строительный университет, 2013. 172 с. ISBN 9785958505548. URL: http://biblioclub.ru/index.php?page=book_red&id=256110 (дата обращения: 01.09.2019). Текст: электронный.

Дополнительная литература

- 1. Кудинов, И. В. Теоретические основы теплотехники / И. В. Кудинов, Е. В. Стефанюк; Самарский государственный архитектурно-строительный университет. Самара : Самарский государственный архитектурно-строительный университет, 2013. 422 с. ISBN 9785958505555. URL: http://biblioclub.ru/index.php?page=book_red&id=256111 (дата обращения: 01.09.2019). Текст : электронный.
- 2. Основы теплотехники и энергосбережение: учебное пособие [для студентов 170500 (240801) "Машины и аппараты химических производств" и 100700 (140104) "Промышленная теплоэнергетика"] / П. Т. Петрик [и др.]; ГОУ ВПО "Кузбас. гос. техн. ун-т", Каф. процессов, машин и аппаратов хим. пр-в. Кемерово : Издательство КузГТУ, 2006. 244 с. URL: http://library.kuzstu.ru/meto.php?n=90128&type=utchposob:common. Текст : непосредственный + электронный.

2370171