минобрнауки россии

федеральное государственное бюджетное образовательное учреждение высшего образования

«Кузбасский государственный технический университет имени Т. Ф. Горбачева»

Институт информационных технологий, машиностроения и автотранспорта

ПОДПИСАНО ЭП КУЗГТУ

Подразделение: институт информационных технологий, машиностроения и автотранспорта Должность: директор института Дата: 16.05.2022 21:17:56

Стенин Дмитрий Владимирович

Рабочая программа дисциплины

Надежность и диагностика технологических систем

Направление подготовки 15.03.05 Конструкторско-технологическое обеспечение машиностроительных производств Направленность (профиль) 01 Технология машиностроения

> Присваиваемая квалификация "Бакалавр"

> > Формы обучения очная, заочная

Кемерово 2022 г.

Рабочую программу составил:

ПОДПИСАНО ЭП КУЗГТУ

Подразделение: кафедра технологии машиностроения Должность: старший преподаватель Дата: 10.06.2022 21:45:31

Глинка Александра Сергеевна

Рабочая программа обсуждена на заседании кафедры технологии машиностроения

Протокол № 3/1 от 14.03.2022

ПОДПИСАНО ЭП КУЗГТУ

Подразделение: кафедра технологии машиностроения Должность: заведующий кафедрой (к.н)

Дата: 14.03.2022 13:28:49

Абабков Николай Викторович

Согласовано учебно-методической комиссией по направлению подготовки (специальности) 15.03.05 Конструкторско-технологическое обеспечение машиностроительных производств

Протокол № 4/1 от 04.04.2022

ПОДПИСАНО ЭП КУЗГТУ

Подразделение: кафедра технологии машиностроения Должность: заведующий кафедрой (к.н)
Дата: 04.04.2022 07:37:34

Абабков Николай Викторович

2.

1 Перечень планируемых результатов обучения по дисциплине "Надежность и диагностика технологических систем", соотнесенных с планируемыми результатами освоения образовательной программы

Освоение дисциплины направлено на формирование:

общепрофессиональных компетенций:

ОПК-3 - Способен внедрять и осваивать новое технологическое оборудование;

ОПК-5 - Способен использовать основные закономерности, действующие в процессе изготовления машиностроительных изделий требуемого качества, заданного количества при наименьших затратах общественного труда;

универсальных компетенций:

УК-1 - Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач

Результаты обучения по дисциплине определяются индикаторами достижения компетенций

Индикатор(ы) достижения:

Использует знание физических законов для решения поставленных задач

Использует знания о видах и возможностях нового технологического оборудования, знает и использует основные правила и требования его внедрения и освоения

Знает и использует основные закономерности, действующие в процессе изготовления машин требуемого качества при наименьших затратах на их производство

Результаты обучения по дисциплине:

основные законы механики, молекулярной физики и термодинамики, электростатики и электромагнетизма, волновой и квантовой оптики, ядерной физики и элементарных частиц; физический смысл и математическое изображение основных физических законов

виды и возможности нового технологического оборудования, основные правила и требования его внедрения и освоения, способы диагностики состояния объектов машиностроительных производств с

- использованием необходимых методов и средств анализа, способы и применение современных методов контроля и диагностики

основные закономерности, действующие в процессе изготовления машин

самостоятельно анализировать физические явления, происходящие в природе и различных устройствах; самостоятельно работать со справочной литературой; выполнять необходимые расчеты и определять параметры процессов

диагностировать состояние объектов машиностроительных производств с использованием необходимых методов контроля и диагностики и средств анализа, использовать основные правила и требования внедрения и освоения нового технологического оборудования

использовать методы определения соответствия выпускаемой продукции требованиям регламентирующей документации в процессе изготовления машиностроительных изделий требуемого качества

самостоятельно анализировать физические явления, происходящие в природе и различных устройствах; самостоятельно работать со справочной литературой; выполнять необходимые расчеты и определять параметры процессов

знаниями о способах внедрения и освоения нового технологического оборудования

Знаниями по определению и использованию основных закономерностей, действующих в процессе изготовления машин требуемого качества при наименьших затратах на их производство

2 Место дисциплины "Надежность и диагностика технологических систем" в структуре ОПОП бакалавриата

Для освоения дисциплины необходимы знания умения, навыки и (или) опыт профессиональной деятельности, полученные в рамках изучения следующих дисциплин: Математика, Физика.

Дисциплина входит в Блок 1 «Дисциплины (модули)» ОПОП. Цель дисциплины - получение обучающимися знаний, умений, навыков и (или) опыта профессиональной деятельности, необходимых для формирования компетенций, указанных в пункте 1

2225

З Объем дисциплины "Надежность и диагностика технологических систем" в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам занятий) и на самостоятельную работу обучающихся

Общая трудоемкость дисциплины "Надежность и диагностика технологических систем" составляет 4 зачетных единицы, 144 часа.

Форма обучения		Количество часов		
		3Ф	03Ф	
Курс 3/Семестр 5				
Всего часов	144	144		
Контактная работа обучающихся с преподавателем (по видам учебных занятий):				
Аудиторная работа	ı			
Лекции	16	4		
Лабораторные занятия	16	4		
Практические занятия				
Внеаудиторная работа	ı			
Индивидуальная работа с преподавателем:				
Консультация и иные виды учебной деятельности				
Самостоятельная работа	76	127		
Форма промежуточной аттестации	экзамен /36	экзамен /9		

4 Содержание дисциплины "Надежность и диагностика технологических систем", структурированное по разделам (темам)

4.1. Лекционные занятия

Раздел дисциплины, темы лекций и их содержание		Трудоемкость в часах		
	ОФ	3Ф	ОЗФ	
Конструкционные материалы - объект диагностирования	4	1		
Процессы, протекающие в материалах на различных этапах жизненного цикла	4	1		
Диагностирование и разрушающие испытания.	4	1		
Неразрушающие методы испытаний при техническом диагностировании	4	1		
ИТОГО	16	4		

4.2. Лабораторные занятия

Наименование работы	Трудоемкость в часах ОФ 3Ф ОЗФ		ax
			ОЗФ
Основные требования промышленной безопасности	2	0,5	
Основы экспертизы промышленной безопасности	2	0,5	
Основы технического регулирования	2	0,5	

Основные методы неразрушающего контроля качества деталей машин	2	0,5	
Визуальный и измерительный контроль качества деталей машин	4	1	
Разрушающие методы испытаний контроля качества деталей машин	4	1	
ИТОГО	16	4	

4.3 Практические (семинарские) занятия

Тема занятия	Трудоемкость в часах ОФ 3Ф ОЗФ		
			ОЗФ

4.4 Самостоятельная работа обучающегося и перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

Вид СРС	Трудоемкость в часах ОФ ЗФ ОЗФ		
			ОЗФ
Изучение теоретического материала	52	103	
Подготовка к лабораторным работам	24	24	
Экзамен	36	9	

4.5 Курсовое проектирование

5 Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине "Надежность и диагностика технологических систем"

5.1 Паспорт фонда оценочных средств

Форма(ы)	Компетенции,	Индикатор(ы)	Результаты	обучения	по Уровень
текущего	формируемые	достижения	дисциплине (м	юдулю)	
контроля	в результате	компетенции			
	освоения				
	дисциплины				
	(модуля)				

0	опк-з	11	2	D
			Знать виды и возможности	
контрольным		видах и возможностях		
вопросам в			оборудования, основные правила	
соответствии с			и требования его внедрения и	
рабочей			освоения, способы диагностики	
программой		использует основные		
			машиностроительных	
			производств с использованием	
			необходимых методов и средств	
			анализа, способы и применение	
			современных методов контроля и	
			диагностики	
			Умеет диагностировать	
			состояние объектов	
			машиностроительных	
			производств с использованием	
			необходимых методов контроля и	
			диагностики и средств анализа,	
			использовать основные правила и	
			требования внедрения и	l
			освоения нового	
			технологического оборудования	
			Владеет знаниями о способах	
			внедрения и освоения нового	
			технологического оборудования	
Опрос по	ОПК-5		Знать основные закономерности,	Высокий
контрольным			действующие в процессе	или
вопросам в			изготовления машин	средний
соответствии с			Умеет использовать методы	
рабочей		процессе изготовления		
программой			выпускаемой продукции	
			требованиям регламентирующей	
			документации в процессе	
		на их производство	изготовления	
			машиностроительных изделий	
			требуемого качества	
			Владеет знаниями по	
			определению и использованию	
			основных закономерностей,	
			действующих в процессе	
			изготовления машин требуемого	
			качества при наименьших	
			затратах на их производство	

Опрос по	УК-1	Использует	знание	Знать	основн	ые законь	Высокий
контрольным		физических					
вопросам в		для р	ешения	И	термо	динамики	, средний
соответствии с		поставленных	задач	электро	остатин	и их	I
рабочей						а, волновой и	
программой						ки, ядерной	
						арных частиц	;
				физиче	ский	СМЫСЛ	I
				математи	ческое	изображение	9
						их законов	
				Умеет	само	стоятельно	
				анализир	овать	физические	
					_	сходящие в	
						различных	
						мостоятельно	
						справочной	
						выполняті	
						расчеты и	
				1	-	гры процессов	
				1 ''	-	ыми методами	
				1-	-	ских задач и	
						тараметрон	
				1*	-	оцессов в	
				техничес	ских уст	гройствах и	ɪ
				системах			

Высокий уровень достижения компетенции - компетенция сформирована частично, рекомендованные оценки: отлично, хорошо.

Средний уровень достижения компетенции - компетенция сформирована частично, рекомендованные оценки: хорошо, удовлетворительно.

Низкий уровень достижения компетенции - компетенция не сформирована частично, оценивается: неудовлетворительно.

5.2. Контрольные задания или иные материалы

Текущий контроль успеваемости и аттестационные испытания обучающихся могут быть организованы с использованием ресурсов ЭИОС КузГТУ.

5.2.1.Оценочные средства при текущем контроле

Опрос по контрольным вопросам:

При проведении текущего контроля обучающимся будет письменно, либо устно задано два вопроса, на которые они должны дать ответы.

Например:

- 1. Дайте определения: прогноз, диагноз, генез.
- 2. Технологические дефекты изготовления технических устройств опасных производственных объектов.

Критерии оценивания:

- 85-100 баллов при правильном и полном ответе на два вопроса;
- 65-84 баллов при правильном и полном ответе на один из вопросов и правильном, но не полном ответе на другой из вопросов;
 - 25-64 баллов при правильном и неполном ответе только на один из вопросов;
 - 0-24 баллов при отсутствии правильных ответов на вопросы.

Количество баллов 0-24 25-64 65-84	4 85-100
Шкала оценивания неуд удовл хорог	шо отлично

Примерный перечень контрольных вопросов:

- 1. Что такое диагностический процесс?
- 2. Определения: прогноз, диагноз, генез
- 3. Какие дефекты подлежит выявлению при визуально-измерительном контроле технических устройств и металлоконструкций в процессе их эксплуатации?
 - 4. Виды коррозии металлов, перечислить
 - 5. Дайте определение надежности

- 6. Что такое качество продукции?
- 7. Сформулируйте определение долговечности
- 8. Что такое ремонтопригодность?
- 9. Технологические дефекты изготовления технических устройств опасных производственных объектов
 - 10. Дайте определение диагностики
 - 11. Диагностирование и разрушающие испытания
 - 12. Неразрушающие методы испытаний при техническом диагностировании
 - 13. Перечислите процессы, протекающие в материалах на различных этапах жизненного цикла
 - 14. Объясните, что такое предельное состояние
 - 15. Дефекты плавки и литья
 - 16. Дефекты обработки давлением
 - 17. Стадии экспертизы промышленной безопасности опасных производственных объектов
 - 18. Нормативные документы, дающие определение толкование технического регулирования
 - 19. Металлографические исследования
 - 20. Общие требования промышленной безопасности

Отчеты по лабораторным работам:

По каждой работе обучающиеся самостоятельно оформляют отчеты в электронном формате(согласно перечню лабораторных работ п.4 рабочей программы).

Содержание отчета:

- 1.Тема работы.
- 2. Задачи работы.
- 3. Краткое описание хода выполнения работы.
- 4. Ответы на задания или полученные результаты по окончании выполнения работы (в зависимости от задач, поставленных в п. 2).
 - 5. Выводы

Критерии оценивания:

- 75 100 баллов при раскрытии всех разделов в полном объеме
- 0 74 баллов при раскрытии не всех разделов, либо при оформлении разделов в неполном объеме.

Количество баллов	0-74	75-100
Шкала оценивания	Не зачтено	Зачтено

Тестирование:

При проведении текущего контроля обучающимся необходимо ответить на вопросы тестирования, которое может быть организовано с использованием ресурсов ЭИОС КузГТУ.

Например:

Критерии оценивания:

Критерии оценивания:

- 85- 100 баллов при ответе на <84% вопросов
- 65 84 баллов при ответе на >64и <85% вопросов
- 25 64 баллов при ответе на >24 и <65% вопросов
- 0 24 баллов при ответе на <25% вопросов

Примеры тестовых заданий:

- 1. Когда проводится визуально-измерительный контроль материалов и сварных соединений?
- а) перед другими методами неразрушающего контроля
- б) сегда после радиографического контроля
- в) только перед ультразвуковым контролем
- 2. К разрушающим испытаниям относят:
- а) измерение твердости
- б) контроль течеисканием
- в) металлографические исследования
- 3. Капиллярный метод контроля основан на взаимодействии с объектом контроля:
- а) веществ
- б) физических полей
- 4. Что называют абсолютной погрешностью прибора?
- а) разность между показаниями прибора и действительным значением
- б) разность между показанием прибора и классом точности прибора
- 5. Первичный информативный параметр это:

1622250341

- а) одна из основных характеристик физического поля или проникающего вещества
- б) совокупность характеристик физического поля или проникающего вещества
- 6. В каких средах (материалах) могут распространяться продольные волны?
- а) в любых средах кроме вакуума
- б) только в твердых средах
- в) только в жидких средах
- г) только в газообразных средах
- 7. Предшествующую обработку материала можно определить при помощи
- а) микроанализа
- б) макроанализа
- 8. Участок основного металла, не подвергшийся расплавлению, структура и свойства которого изменились в результате нагрева при сварке и наплавке, называется
 - а) зона термического влияния
 - б) зона синеломкости
 - в) переходная зона
 - 9. Основаны на взаимодействии физических полей или веществ с дефектами:
 - а) неразрушающие методы контроля
 - б) разрушающие методы контроля
- 10. Способ контроля заключается в фиксации на пленке изображения контролируемой зоны с темными пятнами в местах расположения дефектов:
 - а) радиационный
 - б) оптический
 - в) радиоволновой

Количество баллов	0-24	25-64	65-84	85-100
Шкала оценивания	неуд	удовл	хорошо	отлично

и т.п. в соответствии с рабочей программой

5.2.2 Оценочные средства при промежуточной аттестации

Формой промежуточной аттестации является экзамен, в процессе которого определяется сформированность обозначенных в рабочей программе компетенций.

Инструментом измерения сформированности компетенций в соответствии с рабочей программой являются:

- зачтенные отчеты обучающихся по лабораторным работам;
- ответы обучающихся на вопросы во время опроса;
- тестирование.

При проведении промежуточного контроля обучающийся отвечает на 2 вопроса, выбранных случайным образом в соответствии с рабочей программой. Опрос может проводиться в письменной и (или) устной, и (или) электронной форме.

Ответ на вопросы:

Критерии оценивания при ответе на вопросы:

- 85-100 баллов при правильном и полном ответе на два вопроса;
- 65-84 баллов при правильном и полном ответе на один из вопросов и правильном, но не полном ответе на другой из вопросов;
 - 25-64 баллов при правильном и неполном ответе только на один из вопросов;
 - 0-24 баллов при отсутствии правильных ответов на вопросы.

Количество баллов	0-24	25-64	65-84	85-100
Шкала оценивания	неуд	удовл	хорошо	отлично

Примерный перечень вопросов к экзамену:

- 1. Основы проведения экспертизы промышленной безопасности
- 2. Изменение структуры и свойств сталей и сварных соединений после длительной эксплуатации на различных этапах жизненного цикла

- 3. Основные требования промышленной безопасности
- 4. Основы технического регулирования
- 5. Структура сталей, дефекты металлургического производства и обработки металлов давлением
- 6. Радиоволновой метод неразрушающего контроля
- 7. Виды эксплуатационных разрушений основного металла и сварных соединений, причины разрушений
- 8. Дефекты сварных соединений конструкционных сталей
- 9. Технологические дефекты изготовления технических устройств опасных производственных объектов
- 10. Разрушающие методы испытаний контроля качества сварных соединений
- 11. Визуальный и измерительный контроль качества сварных соединений
- 12. Фрактографические исследования
- 13. Акустический метод неразрушающего контроля
- 14. Радиационный метод неразрушающего контроля
- 15. Магнитный метод неразрушающего контроля
- 16. Вихретоковый метод неразрушающего контроля
- 17. Тепловой метод неразрушающего контроля
- 18. Оптический метод неразрушающего контроля
- 19. Электрический метод неразрушающего контроля
- 20. Капиллярный метод неразрушающего контроля, метод неразрушающего контроля течеисканием

5.2.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующие этапы формирования компетенций

1. Текущий контроль успеваемости обучающихся, осуществляется в следующем порядке: в конце завершения освоения соответствующей темы обучающиеся, по распоряжению педагогического работника, убирают все личные вещи, электронные средства связи и печатные источники информации.

Для подготовки ответов на вопросы обучающиеся используют чистый лист бумаги любого размера и ручку. На листе бумаги обучающиеся указывают свои фамилию, имя, отчество (при наличии), номер учебной группы и дату проведения текущего контроля успеваемости.

Научно-педагогический работник устно задает два вопроса, которые обучающийся может записать на подготовленный для ответа лист бумаги.

В течение установленного научно-педагогическим работником времени обучающиеся письменно формулируют ответы на заданные вопросы. По истечении указанного времени листы бумаги с подготовленными ответами обучающиеся передают научно-педагогическому работнику для последующего оценивания результатов текущего контроля успеваемости.

При подготовке ответов на вопросы обучающимся запрещается использование любых электронных и печатных источников информации. В случае обнаружения научно-педагогическим работником факта использования обучающимся при подготовке ответов на вопросы указанные источники информации - оценка результатов текущего контроля соответствует 0 баллов и назначается дата повторного прохождения текущего контроля успеваемости.

Текущий контроль успеваемости обучающихся по результатам выполнения лабораторных и (или) практических работ осуществляется в форме отчета, который предоставляется научно-педагогическому работнику на бумажном и (или) электронном носителе. Научно-педагогический работник, после проведения оценочных процедур, имеет право вернуть обучающемуся отчет для последующей корректировки с указанием перечня несоответствий. Обучающийся обязан устранить все указанные несоответствия и направить отчет научно-педагогическому работнику в срок, не превышающий трех учебных дней, следующих за днем проведения текущего контроля успеваемости.

Результаты текущего контроля доводятся до сведения обучающихся в течение трех учебных дней, следующих за днем проведения текущего контроля успеваемости.

Обучающиеся, которые не прошли текущий контроль успеваемости в установленные сроки, обязаны пройти его в срок до начала процедуры промежуточной аттестации по дисциплине в соответствии с расписанием промежуточной аттестации.

Результаты прохождения процедур текущего контроля успеваемости обучающихся учитываются при оценивании результатов промежуточной аттестации обучающихся.

225034

1. Промежуточная аттестация обучающихся проводится после завершения обучения по дисциплине в семестре в соответствии с календарным учебным графиком и расписанием промежуточной аттестации.

Для успешного прохождения процедуры промежуточной аттестации по дисциплине обучающиеся должны:

- 1. получить положительные результаты по всем предусмотренным рабочей программой формам текущего контроля успеваемости;
- 2. получить положительные результаты аттестационного испытания.

Для успешного прохождения аттестационного испытания обучающийся в течение времени, установленного научно-педагогическим работником, осуществляет подготовку ответов на два вопроса, выбранных в случайном порядке.

Для подготовки ответов используется чистый лист бумаги и ручка.

На листе бумаги обучающиеся указывают свои фамилию, имя, отчество (при наличии), номер учебной группы и дату проведения аттестационного испытания.

При подготовке ответов на вопросы обучающимся запрещается использование любых электронных и печатных источников информации.

По истечении указанного времени, листы с подготовленными ответам на вопросы обучающиеся передают научно-педагогическому работнику для последующего оценивания результатов промежуточной аттестации.

В случае обнаружения научно-педагогическим работником факта использования обучающимся при подготовке ответов на вопросы указанные источники информации - оценка результатов промежуточной аттестации соответствует 0 баллов и назначается дата повторного прохождения аттестационного испытания.

Результаты промежуточной аттестации обучающихся размещаются в ЭИОС КузГТУ.

Текущий контроль успеваемости и промежуточная аттестация обучающихся могут быть организованы с использованием ЭИОС КузГТУ, порядок и формы проведения текущего контроля успеваемости и промежуточной аттестации обучающихся при этом не меняется.

6 Учебно-методическое обеспечение

6.1 Основная литература

- 1. Надежность и диагностика технических систем: учебное пособие / А. А. Воробьев, Г. П. Карлов, И. Н. Спицын [и др.]. Красноярск: СибГУ им. академика М. Ф. Решетнёва, 2018. 120 с. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/147607 (дата обращения: 11.02.2021). Режим доступа: для авториз. пользователей.
- 2. Юркевич, В. В. Надежность и диагностика технологических систем: учебник для студентов вузов, обучающихся по специальности "Металлообраб. станки и комплексы" направления подгот. "Конструкт.-технолог. обеспечение машиностроит. пр-в" / В. В. Юркевич, А. Г. Схиртладзе. Москва: Академия, 2011. 304 с. (Высшее профессиональное образование: Машиностроение). Текст: непосредственный.

6.2 Дополнительная литература

- 1. Синопальников, В. А. Надежность и диагностика технологических систем: учебник для студентов вузов, обучающихся по специальности "Металлообраб. станки и комплексы" направления подгот. дипломир. специалистов "Конструкт.-технолог. обеспечение машиностроит. пр-в" / В. А. Синопальников, С. Н. Григорьев. М.: Высшая школа, 2005. 343 с. Текст: непосредственный.
- 2. Завистовский, В. Э. Надежность и диагностика технологического оборудования / В. Э. Завистовский. Минск : РИПО, 2019. 261 с. ISBN 9789855038529. URL: http://biblioclub.ru/index.php?page=book_red&id=600075 (дата обращения: 11.02.2021). Текст : электронный.

6222503

6.3 Методическая литература

6.4 Профессиональные базы данных и информационные справочные системы

- 1. Электронная библиотечная система «Университетская библиотека онлайн» http://biblioclub.ru/
- 2. Электронная библиотечная система «Лань» http://e.lanbook.com
- 3. Электронная библиотека КузГТУ https://elib.kuzstu.ru/index.php?option=com_content&view=article&id=230&Itemid=229

6.5 Периодические издания

- 1. Контроль. Диагностика : научно-технический журнал (печатный)
- 2. Проблемы машиностроения и надежности машин : журнал (печатный/электронный) https://elibrary.ru/contents.asp?titleid=7959

7 Перечень ресурсов информационно-телекоммуникационной сети «Интернет»

ЭИОС КузГТУ:

- а) Электронная библиотека КузГТУ. Текст: электронный // Научно-техническая библиотека Кузбасского государственного технического университета им. Т. Ф. Горбачева : сайт. Кемерово, 2001 . URL: https://elib.kuzstu.ru/. Текст: электронный.
- b) Портал.КузГТУ: Автоматизированная Информационная Система (АИС): [сайт] / Кузбасский государственный технический университет им. Т. Ф. Горбачева. Кемерово: КузГТУ, [б. г.]. URL: https://portal.kuzstu.ru/. Режим доступа: для авториз. пользователей. Текст: электронный.
- с) Электронное обучение : [сайт] / Кузбасский государственный технический университет им. Т. Ф. Горбачева. Кемерово : КузГТУ, [б. г.]. URL: https://el.kuzstu.ru/. Режим доступа: для авториз. пользователей КузГТУ. Текст: электронный.

8 Методические указания для обучающихся по освоению дисциплины "Надежность и диагностика технологических систем"

Самостоятельная работа обучающегося является частью его учебной деятельности, объемы самостоятельной работы по каждой дисциплине (модулю) практике, государственной итоговой аттестации, устанавливаются в учебном плане.

Самостоятельная работа по дисциплине (модулю), практике организуется следующим образом:

- 1. До начала освоения дисциплины обучающемуся необходимо ознакомиться с содержанием рабочей программы дисциплины (модуля), программы практики в следующем порядке:
- 1.1 содержание знаний, умений, навыков и (или) опыта профессиональной деятельности, которые будут сформированы в процессе освоения дисциплины (модуля), практики;
- 1.2 содержание конспектов лекций, размещенных в электронной информационной среде КузГТУ в порядке освоения дисциплины, указанном в рабочей программе дисциплины (модуля), практики;
 - 1.3 содержание основной и дополнительной литературы.
- 2. В период освоения дисциплины обучающийся осуществляет самостоятельную работу в следующем порядке:
- 2.1 выполнение практических и (или) лабораторных работы и (или) отчетов в порядке, установленном в рабочей программе дисциплины (модуля), практики;
- 2.2 подготовка к опросам и (или) тестированию в соответствии с порядком, установленном в рабочей программе дисциплины (модуля), практики;
- 2.3 подготовка к промежуточной аттестации в соответствии с порядком, установленном в рабочей программе дисциплины (модуля), практики.
- В случае затруднений, возникших при выполнении самостоятельной работы, обучающемуся необходимо обратиться за консультацией к педагогическому работнику. Периоды проведения консультаций устанавливаются в расписании консультаций.
- 9 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине "Надежность и диагностика технологических

1622250343

систем", включая перечень программного обеспечения и информационных справочных систем

Для изучения дисциплины может использоваться следующее программное обеспечение:

- 1. Mozilla Firefox
- 2. Google Chrome
- 3. 7-zip
- 4. Microsoft Windows
- 5. ESET NOD32 Smart Security Business Edition
- 6. Kaspersky Endpoint Security
- 7. Браузер Спутник

10 Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине "Надежность и диагностика технологических систем"

Для реализации программы учебной дисциплины предусмотрены специальные помещения:

- 1. Помещения для самостоятельной работы обучающихся должны оснащенные компьютерной техникой с возможностью подключения к сети & amp; amp; quot; Интернет amp; amp; amp; quot; и обеспечением доступа к электронной информационно-образовательной среде Организации.
- 2. Учебные аудитории для проведения занятий лекционного типа, занятий семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации.

11 Иные сведения и (или) материалы

1. Образовательный п	гроцесс	осуществляется	с использованием	как	традиционных	так	И
современных интерактивных т	гехнологі	ий.					

_							
В	namkax	аулиторных	занятии	применяются	спелующие	интерактивные	метолы.

- П разбор конкретных примеров;
- ∏ мультимедийная презентация.
- 2. Проведение групповых и индивидуальных консультаций осуществляется в соответствии с расписанием консультаций по темам, заявленным в рабочей программе дисциплины, в период освоения дисциплины и перед промежуточной аттестацией с учетом результатов текущего контроля.

225034 13