минобрнауки россии

федеральное государственное бюджетное образовательное учреждение высшего образования

«Кузбасский государственный технический университет имени Т. Ф. Горбачева»

Институт энергетики

подписано эп кузгту

Институт энергетики Директор

Дата: 25.11.2022 12:11:00

И.С. Егоров

Фонд оценочных средств дисциплины

Введение в автоматику

Направление подготовки 13.03.02 Электроэнергетика и электротехника Направленность (профиль) Автоматизация технологических процессов в энергетике

> Присваиваемая квалификация "Бакалавр"

> > Формы обучения очная

1 Паспорт фонда оценочных средств

Планируемые результаты обучения по дисциплине (модулю)

Дисциплина направлена на формирование следующих компетенций выпускника:

Дисциплина направлена в Форма текущего контроля знаний, умений, навыков, необходимых для формирования соответствующей компетенции	Компетенции, формируемые в результате освоения дисциплины (модуля)	Индикатор(ы) достижения компетенции	Результаты обучения по дисциплине (модулю)	Уровень
Опрос по контрольным вопросам, подготовка отчетов по практическим и(или) лабораторным работам и(или) тестирование	ПК-2	Выбирает современное оборудование и программное обеспечение АСТУ электрических сетей.	Знать основы автоматизации объектов энергетики, в том числе электрических сетей; современное оборудование и программное обеспечение автоматизированных систем технологического управления (АСТУ). Уметь выбирать современное оборудование и программное обеспечение АСТУ. Владеть навыками работы с современным оборудованием и программным оборудованием и программным обеспечением АСТУ; навыками построения АСТУ.	Высокий или средний
Опрос по контрольным вопросам, подготовка отчетов по практическим и(или) лабораторным работам и(или) тестирование	ПК-3	Обоснованно выбирает типовые варианты АСТУ электрических сетей.	Знать типовые варианты АСТУ объектов энергетики, в том числе электрических сетей. Уметь использовать типовые варианты АСТУ объектов энергетики, в том числе электрических сетей. Владеть навыками поиска и выбора типовых вариантов АСТУ объектов энергетики, в том числе электрических сетей.	Высокий или средний

Высокий уровень достижения компетенции - компетенция сформирована, рекомендованные оценки: отлично, хорошо, зачтено.

Средний уровень достижения компетенции - компетенция сформирована, рекомендованные оценки: хорошо, удовлетворительно, зачтено.

Низкий уровень достижения компетенции - компетенция не сформирована, оценивается неудовлетворительно или не зачтено.

2. Типовые контрольные задания или иные материалы

Текущий контроль успеваемости и аттестационные испытания обучающихся могут быть организованы с использованием ресурсов ЭИОС КузГТУ.

2.1.Оценочные средства при текущем контроле

Текущий контроль по темам дисциплины заключается в опросе обучающихся по контрольным вопросам, подготовке отчетов по практическим и(или) лабораторным работам и(или) тестировании.

Опрос по контрольным вопросам.

При проведении текущего контроля обучающимся будет письменно, либо устно задано два вопроса, на которые они должны дать ответы.

Например:

- 1. Автоматы эпохи античности.
- 2. Цели автоматизации.

Критерии оценивания:

- 90-100 баллов при правильном и полном ответе на два вопроса;
- 80-89 баллов при правильном и полном ответе на один из вопросов и правильном, но неполном ответе на другой из вопросов;
- 60-79 баллов при правильном и неполном ответе только на один из вопросов;
- 0-59 баллов при отсутствии правильных ответов на вопросы.

Количество баллов	0-59	60-79	80-89	90-100
Шкала оценивания	неудовлетворительно	удовлетворительно	хорошо	отлично

Примерный перечень контрольных вопросов:

1 семестр

Раздел 1. Понятие автоматизации. История возникновения и развития автоматизации, основные этапы.

- 1. Основные понятия: автомат, автоматика, автоматизация.
- 2. Автоматы эпохи античности.
- 3. Автоматы эпохи Средневековья и Возрождения.
- 4. Автоматика в эпоху промышленного переворота.
- 5. Становление автоматизации как науки (19-20 века).
- 6. Автоматизация в современном мире.
- 7. Объекты автоматизации.
- 8. Цели автоматизации.

Раздел 2. Автоматизированные системы управления (АСУ).

- 1. Объект управления. Классификация воздействий.
- 2. Управление. Задача управления. Управляющее устройство.
- 3. Система автоматического управления.
- 4. Принцип разомкнутого управления.
- 5. Принцип управления по возмущению.
- 6. Принцип обратной связи (управление по отклонению).
- 7. Принцип комбинированного управления.
- 8. Автоматизированная система управления технологическим процессом (АСУ ТП). Уровни АСУ ТП.
- 9. Автоматизированная система управления предприятием (АСУП). Уровни АСУП.
- 10. Автоматизированная система технологического управления (АСТУ). Подсистемы АСТУ.

Раздел 3. АСТУ тепловых электростанций (ТЭС).

- 1. Тепловая электростанция (ТЭС). Классификация.
- 2. Технологическая схема ТЭС.
- 3. Технологические процессы ТЭС.
- 4. Состав АСТУ ТЭС.
- 5. Система автоматического управления газотурбинными установками.
- 6. Система автоматического управления паровыми турбинами.
- 7. Система автоматического управления котлов-утилизаторов.
- 8. Система автоматического управления общестанционным оборудованием.
- 9. Система автоматического управления химводоочистки.
- 10. Система автоматического управления узла подготовки топливного газа.

Раздел 4. АСТУ гидроэлектростанций (ГЭС).

- 1. Гидроэлектростанция (ГЭС). Классификация.
- 2. Преимущества и недостатки ГЭС.
- 3. Технологическая схема ГЭС.
- 4. Технологические процессы ГЭС.
- 5. Агрегатный уровень АСТУ ГЭС.
- 6. Станционный уровень АСТУ ГЭС.
- 7. Система автоматического управления уровнем воды.
- 8. Система автоматического управления сороудерживающей решеткой.
- 9. Система автоматического управления гидроагрегатами.
- 10. Система автоматического управления входыми задвижками.

Раздел 5. АСТУ атомных электростанций (АЭС).

- 1. Атомная электростанция (АЭС). Классификация.
- 2. Атомный реактор. Цепная ядерная реакция.
- 3. Принцип управления ядерной реакцией.
- 4. Технологическая схема АЭС.
- 5. Технологические процессы АЭС.
- 6. Специфика задач автоматизации АЭС.

Раздел 6. АСТУ ветряных (ВЭС) и солнечных (СЭС) электростанций.

- 1. Ветроэлектростанции (ВЭС). Преимущества и недостатки.
- 2. Солнечные электростанции (СЭС). Преимущества и недостатки.
- 3. Устройство и принцип работы ветрогенератора.
- 4. Устройство и принцип работы солнечной электростанции.
- 5. Фотоэлектрическая солнечная электростанция.
- 6. Автоматизация ветроэлектростанции.
- 7. Пример системы управления ВЭС.
- 8. Автоматизация солнечной электростанции.

Раздел 7. АСТУ электрических сетей.

- 1. Электрическая сеть. Классификация.
- 2. Подстанция. Распределительное устройство. Распределительный пункт. Линии электропередачи.
- 3. Энергосистема. Электроэнергетическая система.
- 4. Принципы передачи и распределения электроэнергии.
- 5. Уровень процессов АСТУ электрических сетей.
- 6. Уровень присоединений АСТУ электрических сетей.
- 7. Уровень станции АСТУ электрических сетей.
- 8. Релейная защита и автоматика (РЗА).
- 9. Противоаварийная автоматика (ПА).
- 10. Автоматика ввода резерва (АВР).
- 11. Система автоматического повторного включения (АПВ).
- 12. Автоматизированная система коммерческого учета электроэнергии (АСКУЭ).
- 13. Автоматизированная измерительно-информационная система коммерческого учета электроэнергии (АИИС КУЭ).
- 14. Первый и второй уровни АСКУЭ.
- 15. Третий и четвертый уровни АСКУЭ.

2 семестр

Раздел 1. Техническое обеспечение АСТУ.

- 1. Датчик. Назначение.
- 2. Механические датчики.
- 3. Электромеханические датчики.
- 4. Электрические датчики.
- 5. Тепловые датчики.
- 6. Оптические и электронные датчики.
- 7. Классификация датчиков по виду выходной величины.
- 8. Классификация датчиков по принципу действия.
- 9. Исполнительное устройство. Назначение. Состав.
- 10. Регулирующий орган. Назначение. Приемры.
- 11. Электродвигательный исполнительный механизм.
- 12. Электромагнитный исполнительный механизм.
- 13. Пневматические исполнительные механизмы.
- 14. Гидравлические исполнитьельные механизмы.
- 15. Автоматический регулятор. Классификация.
- 16. Программируемый логический контроллер (ПЛК). Архитектура.
- 17. Автоматизированное рабочее место (АРМ). Функции.
- 18. Состав АРМ. Классификация рабочих станций.

Раздел 2. Программное обеспечение АСТУ.

- 1. Программирование ПЛК. Характеристика переменных.
- 2. Адресация переменных.
- 3. Стандартные языки программирования ПЛК.
- 4. Элемента языка FBD.
- 5. Правила программирования на языке FBD.
- 6. Пример программы на языке FBD.
- 7. SCADA-система. Задачи.
- 8. Структура SCADA-системы.

Раздел 3. Информационные сети АСТУ.

- 1. Информационная сеть. Промышленная сеть.
- 2. Сетевое оборудование.
- 3. Кабельные среды передачи данных.
- 4. Беспроводные среды передачи данных.
- 5. Протокол. Интерфейс.
- 6. Способы передачи данных (симплекс, полудуплекс, дуплекс).
- 7. Сегмент сети. Примеры сегментации сети.
- 8. Принцип организации RS485.

Раздел 4. Состав проектной документации на АСТУ.

- 1. Проектирование систем автоматизации. Состав проектной документации.
- 2. Схема автоматизации. Правила построения.
- 3. Условные графические обозначения приборов и средств автоматизации.
- 4. Принцип построения условного обозначения приборов и средств автоматизации.
- 5. Способы выполнения схем автоматизации.

Отчеты по практическим и (или) лабораторным работам (далее вместе - работы):

По каждой работе обучающиеся самостоятельно оформляют отчеты в электронном формате (согласно перечню практических и(или) лабораторных работ п.4 рабочей программы).

Содержание отчета:

- 1. Тема работы.
- 2. Задачи работы.
- 3. Краткое описание хода выполнения работы.
- 4. Ответы на задания или полученные результаты по окончании выполнения работы (в зависимости от задач, поставленных в п. 2).
- 5. Выводы.

Критерии оценивания:

- 60 100 баллов при раскрытии всех разделов в полном объеме.
- 0 59 баллов при раскрытии не всех разделов, либо при оформлении разделов в неполном объеме.

Количество баллов	0-59	60-100	
Шкала оценивания	не зачтено	зачтено	

Тестирование. Текущий контроль успеваемости, проводимый в форме тестирования, включает в себя 10 заданий.

Критерии оценивания:

- 90-100 баллов при правильном ответе на 90-100% заданий;
- 80-89 баллов при правильном ответе на 80-89% заданий;
- 60-79 баллов при правильном ответе на 60-79% заданий;
- 0-59 баллов при правильном ответе на 0-59% заданий.

Количество баллов	0-59	60-79	80-89	90-100
Шкала оценивания	неудовлетворительно	удовлетворительно	хорошо	отлично

Примеры тестовых заданий:

1 семестр

Раздел 1. Понятие автоматизации. История возникновения и развития автоматизации, основные этапы.

- 1. Первыми древними автоматами считают:
- -: катапульты и капканы
- -: автомат для продажи "святой воды"
- -: водяные часы Ктезибия
- -: автоматический регулятор Ползунова И.И.
- 2. Что не является изоретением Герона Александрийского:
- -: автоматические двери
- -: водяные часы
- -: автомат для продажи "святой воды"
- -: формула для расчета площади треугольника
- 3. Что изобрел Ктезибий:
- -: автоматические двери
- -: водяные часы
- -: автомат для продажи "святой воды"
- -: формула для расчета площади треугольника
- 4. Что нельзя отнести к автоматонам:
- -: человекоподобный механизм Да Винчи
- -: автоматический механизм "Художник"
- -: автоматический механизм "Музыкант"
- -: автоматический механизм "Пишущий мальчик"
- 5. Автоматоны изобрел:
- -: Да Винчи
- -: Жак Де Вокансон
- -: Пьер-Жаке Дроз
- -: Ползунов И.И.
- 6. Автоматизация это:
- -: направление научно-технического прогресса, использующее саморегулирующие технические средства и математические методы с целью освобождения человека от участия в процессах получения, преобразования, передачи и использования энергии, материалов, изделий или информации, либо существенного уменьшения степени этого участия или трудоемкости выполняемых операций
- -: отрасль науки и техники, которая разрабатывает технические средства и методы для осуществления технологических процессов без непосредственного участия человека
- -: аппарат (машина, устройство, прибор и т.п.), выполняющий работу при помощи специального

механизма без непосредственного участия человека

7. Автомат - это:

- -: направление научно-технического прогресса, использующее саморегулирующие технические средства и математические методы с целью освобождения человека от участия в процессах получения, преобразования, передачи и использования энергии, материалов, изделий или информации, либо существенного уменьшения степени этого участия или трудоемкости выполняемых операций
- -: отрасль науки и техники, которая разрабатывает технические средства и методы для осуществления технологических процессов без непосредственного участия человека
- -: аппарат (машина, устройство, прибор и т.п.), выполняющий работу при помощи специального механизма без непосредственного участия человека

8. Автоматика - это:

- -: направление научно-технического прогресса, использующее саморегулирующие технические средства и математические методы с целью освобождения человека от участия в процессах получения, преобразования, передачи и использования энергии, материалов, изделий или информации, либо существенного уменьшения степени этого участия или трудоемкости выполняемых операций
- -: отрасль науки и техники, которая разрабатывает технические средства и методы для осуществления технологических процессов без непосредственного участия человека
- -: аппарат (машина, устройство, прибор и т.п.), выполняющий работу при помощи специального механизма без непосредственного участия человека
- 9. Что не является целью автоматизации:
- -: увеличение объемов выпускаемой продукции
- -: повышение эффективности производственного процесса
- -: повышение качества продукции
- -: улучшение внешнего вида конечного продукта
- 10. Развитие автоматизации производства на основе промышленных роботов называют:
- -: автоматизацией
- -: цифровизацией
- -: роботизацией
- -: виртуальной реальностью

Раздел 2. Автоматизированные системы управления (АСУ).

- 1. Системы автоматического регулирования предназначены для:
- -: поддержания постоянной или изменения по требуемому закону технологической величины объекта, характеризующей протекающий в нем процесс
- -: реализации визуальной оценки и регистрации изменения технологического параметра во времени
- -: информирования обслуживающего персонала о ходе технологического процесса и состоянии оборудования
- -: предотвращения аварийных ситуаций на производстве, для защиты оборудования и обслуживающего персонала
- 2. Метод регулирования по возмущению реализован в:
- -: одноконтурной системе автоматического регулирования
- -: каскадной системе автоматического регулирования
- -: комбинированной системе автоматического регулирования
- -: следящей системе автоматического регулирования.
- 3. Входное воздействие, обеспечивающее желаемое изменение поведения объекта управления, называют:
- -: управляющим воздействием
- -: возмущающим контролируемым воздействием
- -: возмущающим неконтролируемым воздействием
- -: задающим воздействием
- 4. Входное воздействие, мешающее обеспечить желаемое изменение поведения объекта управления, называют:
- -: управляющим воздействием

- -: возмущающим воздействием
- -: задающим воздействием
- -: эталонным воздействием
- 5. Поведение объекта управления, как правило, определяется:
- -: управляющим воздействием
- -: возмущающим воздействием
- -: задающим воздействием
- -: выходной величиной
- 6. Задача управления заключается в:
- -: формировании такого закона изменения управляющих воздействий, при котором достигается желаемое поведение объекта независимо от наличия возмущений
- -: предотвращении аварийных ситуаций на производстве, для защиты оборудования и обслуживающего персонала
- -: реализации визуальной оценки и регистрации изменения технологического параметра во времени
- -: информировании обслуживающего персонала о ходе технологического процесса и состоянии оборудования
- 7. Система управления, в которой за человеком-оператором сохранены некоторые функции управления, называется:
- -: автоматической
- -: автоматизированной
- -: механизированной
- -: роботизированной
- 8. Система управления, которая осуществляет управление технологическим процессом без непосредственного участия человека, называется:
- -: автоматической
- -: автоматизированной
- -: механизированной
- -: дистанционной
- 9. Системы автоматического контроля предназначены для:
- -: предотвращения аварийных ситуаций на производстве, для защиты оборудования и обслуживающего персонала
- -: реализации визуальной оценки и регистрации изменения технологического параметра во времени
- -: информирования обслуживающего персонала о ходе технологического процесса и состоянии оборудования
- -: поддержания постоянной или изменения по требуемому закону технологической величины объекта, характеризующей протекающий в нем процесс
- 10. Системы автоматической сигнализации предназначены для:
- -: реализации визуальной оценки и регистрации изменения технологического параметра во времени
- -: предотвращения аварийных ситуаций на производстве, для защиты оборудования и обслуживающего персонала
- -: информирования обслуживающего персонала о ходе технологического процесса и состоянии оборудования
- -: поддержания постоянной или изменения по требуемому закону технологической величины объекта, характеризующей протекающий в нем процесс

Раздел 3. АСТУ тепловых электростанций (ТЭС).

- 1. Что называют тепловой электростанцией (ТЭС)?
- -: комплекс оборудования и устройств, преобразующих энергию топлива в электрическую и тепловую энергию
- -: комплекс оборудования и устройств, преобразующих энергию ветра в электрическую энергию
- -: комплекс оборудования и устройств, преобразующих энергию падения воды в электрическую
- -: комплекс оборудования и устройств, преобразующих энергию приливов океанской воды в электрическую

- 2. Элемент котлоагрегата (теплообменник), в котором питательная вода перед подачей в котел подогревается уходящими из котла газами, называется:
- -: топкой
- -: барабаном
- -: экономайзером
- -: пароперегревателем
- 3. Устройство для сжигания органического топлива с целью преобразования его химической энергии в тепловую называют:
- -: топкой
- -: барабаном
- -: экономайзером
- -: пароперегревателем
- 4. Элемент котлоагрегата, предназначенное для повышения температуры пара выше точки насыщения называется:
- -: топкой
- -: барабаном
- -: экономайзером
- -: пароперегревателем
- 5. Элемент котлоагрегата, который предназначен для разделения пароводяной смеси на перегретый пар и воду, называют:
- -: топкой
- -: барабаном
- -: экономайзером
- -: пароперегревателем
- 6. Автоматизированная система управления розжигом топки котлоагрегета входит в состав АСУ ТП:
- -: теплоэлектростанции
- -: гидроэлектростанции
- -: ветроэлектростанции
- -: атомной электростанции
- 7. Автоматизированная система управления золошлакоудалением входит в состав АСУ ТП:
- -: теплоэлектростанции
- -: гидроэлектростанции
- -: ветроэлектростанции
- -: атомной электростанции
- 8. Автоматизированная система управления паровой турбиной входит в состав АСУ ТП:
- -: теплоэлектростанции
- -: гидроэлектростанции
- -: ветроэлектростанции
- -: солнечной электростанции
- 9. Автоматизированная система управления газовой турбиной входит в состав АСУ ТП:
- -: теплоэлектростанции
- -: гидроэлектростанции
- -: ветроэлектростанции
- -: солнечной электростанции
- 10. Укажите параметр, по которому обычно не производится автоматическая защита котлоагрегата:
- -: давление пара в котле
- -: срыв факела в топке котла
- -: температура топлива, поступающего в топку
- -: уровень воды в барабане котла

Раздел 4. АСТУ гидроэлектростанций (ГЭС).

1. Что называют гидроэлектростанцией (ГЭС)?

- -: комплекс оборудования и устройств, преобразующих энергию топлива в электрическую и тепловую энергию
- -: комплекс оборудования и устройств, преобразующих энергию ветра в электрическую энергию
- -: комплекс оборудования и устройств, преобразующих энергию падения воды в электрическую
- -: комплекс оборудования и устройств, преобразующих солнечную энергию в электрическую
- 2. Автоматизированная система управления уровнем воды в водосборном бассейне входит в состав АСУ тп.
- -: ТЭС
- -: ГЭС
- -: ГРЭС
- -: АЭС
- 3. Автоматизированная система обнаружения закупорки и очистки сороудерживающей решетки входит в состав АСУ ТП:
- -: ТЭС
- -: ГЭС
- -: ГРЭС
- -: АЭС
- 4. Автоматизированная система управления электроприводами задвижек гидроагрегатов входит в состав АСУ ТП:
- -: ТЭС
- -: ГЭС
- -: ГРЭС
- -: АЭС
- 5. Гидротурбину, в которой поток воды протекает по лопастям колеса в осевом направлении и ось вращения потока совпадает с осью вращения рабочего колеса, называют:
- -: турбиной Каплана
- -: турбиной Френсиса
- -: турбиной Пелтона
- -: турбиной Тесла
- 6. Гидротурбину, в которой поток воды вначале протекает в радиальном направлении, перпендикулярном оси вращения рабочего колеса, а затем изменяет свое направление с радиального на осевое, называют:
- -: турбиной Каплана
- -: турбиной Френсиса
- -: турбиной Пелтона
- -: турбиной Тесла
- 7. Гидротурбину, в которой поток воды поступает на рабочее колесо по касательной к рабочему колесу, называют:
- -: турбиной Каплана
- -: турбиной Френсиса
- -: турбиной Пелтона
- -: турбиной Тесла
- 8. Гидравлическая турбина Каплана является:
- -: осевой
- -: радиально-осевой
- -: ковшовой
- -: нет правильного ответа
- 9. Гидравлическая турбина Френсиса является:
- -: осевой
- -: радиально-осевой
- -: ковшовой
- -: нет правильного ответа

- 10. Гидравлическая турбина Пелтона является:
- -: осевой
- -: радиально-осевой
- -: ковшовой
- -: нет правильного ответа

Раздел 5. АСТУ атомных электростанций (АЭС).

- 1. Что называют атомной электростанцией (АЭС)?:
- -: комплекс оборудования и устройств, преобразующих внутреннюю энергию атома в электрическую энергию
- -: комплекс оборудования и устройств, преобразующих энергию ветра в электрическую энергию
- -: комплекс оборудования и устройств, преобразующих энергию падения воды в электрическую
- -: комплекс оборудования и устройств, преобразующих солнечную энергию в электрическую
- 2. Атомная электростанция относится к классу:
- -: тепловых электростанций
- -: гидроэлектростанций
- -: ветроэлектростанций
- -: солнечных электростанций
- 3. Устройство в составе АЭС, предназначенное для организации управляемой самоподдерживающейся цепной реакции деления, которая сопровождается выделением энергии, называют:
- -: парогенератором
- -: гидротурбиной
- -: ядерным реактором
- -: градирней
- 4. Автоматизированная система управления цепной ядерной реакцией входит в состав АСУ ТП:
- -: ТЭС
- -: ГЭС
- -: ГРЭС
- -: АЭС
- 5. Автоматическая системы аварийной защиты реактора АЭС предназначена для:
- -: повышения надежности и готовности оборудования
- -: упрощения эксплуатации оборудования
- -: повышения экономичности эксплуатации оборудования
- -: прекращения цепной ядерной реакции
- 6. Задача обеспечения радиоактивной безопасности персонала и окружающей среды актуальна для:
- -: ТЭС
- -: ГЭС
- -: ГРЭС
- -: АЭС
- 7. Укажите необходимое условие возникновения цепной ядерной реакции в реакторе АЭС:
- -: наличие определенной (критической) массы топливного стержня
- -: соблюдение температурного режима в первом контуре реактора
- -: соблюдение температурного режима во втором контуре реактора
- -: поддержание давления в первом контуре реактора
- 8. ТВЭЛы находятся:
- -: в активной зоне атомного реактора
- -: в первом контуре охлаждения
- -: во втором контуре охлаждения
- -: в парогенераторе
- 9. Замедлитель вводят в:
- -: в активную зону атомного реактора

- -: в первый контур охлаждения
- -: во второй контур охлаждения
- -: в парогенератор
- 10. В состав АЭС не входит:
- -: паротурбина
- -: котлоагрегат
- -: генератор
- -: конденсатор пара

Раздел 6. АСТУ ветряных (ВЭС) и солнечных (СЭС) электростанций.

- 1. Отрасль энергетики, специализирующаяся на преобразовании кинетической энергии воздушных масс в атмосфере в электрическую, механическую, тепловую или в любую другую форму энергии, удобную для использования в народном хозяйстве:
- -: солнечная энергетика
- -: ветроэнергетика
- -: гидроэнергетика
- -: атомная энергетика
- 2. Топливо из растительного или животного сырья, из продуктов жизнедеятельности организмов или органических промышленных отходов:
- -: биотопливо
- -: ветроэнергетика
- -: солнечная энергетика
- -: атомная энергетика
- 3. Направление альтернативной энергетики, основанное на непосредственном использовании солнечного излучения для получения энергии в каком-либо виде:
- -: ветроэнергетика
- -: гидроэнергетика
- -: солнечная энергетика
- -: атомная энергетика
- 4. Область хозяйственно-экономической деятельности человека, совокупность больших естественных и искусственных подсистем, служащих для преобразования энергии водного потока в электрическую энергию:
- -: гидроэнергетика
- -: ветроэнергетика
- -: солнечная энергетика
- -: атомная энергетика
- 5. Направление энергетики, основанное на производстве электрической энергии за счет энергии, содержащейся в недрах земли, на геотермальных станциях:
- -: грозовая энергетика
- -: геотермальная энергетика
- -: водородная энергетика
- -: атомная энергетика
- 6. Способ получения энергии путем поимки и перенаправления энергии молний в электросеть:
- -: управляемый термоядерный синтез
- -: распределенное производство энергии
- -: грозовая энергетика
- -: водородная энергетика
- 7. Синтез более тяжелых атомных ядер из более легких с целью получения энергии, который носит управляемый характер:
- -: распределенное производство энергии
- -: управляемый термоядерный синтез
- -: геотермальная энергетика
- -: грозовая энергетика

- 8. Отрасль энергетики, основанная на использовании водорода в качестве средства для аккумулирования, транспортировки и потребления энергии людьми:
- -: грозовая энергетика
- -: водородная энергетика
- -: геотермальная энергетика
- -: управляемый термоядерный синтез
- 9. Электростанция, преобразующая по единой технологической схеме энергию солнечного излучения и химическую энергию топлива в электрическую и тепловую энергию:
- -: солнечное теплоснабжение
- -: солнечная электростанция
- -: солнечно-топливная электростанция
- -: управляемый термоядерный синтез
- 10. Использование энергии солнечного излучения для отопления, горячего водоснабжения и обеспечения технологических нужд различных потребителей:
- -: солнечное теплоснабжение
- -: солнечная электростанция
- -: солнечно-топливная электростанция
- -: управляемый термоядерный синтез

Раздел 7. АСТУ электрических сетей.

- 1. Каким прибором можно измерить силу тока в электрической цепи?
- -: амперметром
- -: вольтметром
- -: ваттметром
- -: омметром
- 2. Каким прибором можно измерить напряжение в электрической цепи?
- -: амперметром
- -: вольтметром
- -: ваттметром
- -: омметром
- 3. Каким прибором можно измерить мощность в электрической цепи?
- -: амперметром
- -: вольтметром
- -: ваттметром
- -: омметром
- 4. Каким прибором можно измерить сопротивление элементов электрической цепи?
- -: амперметром
- -: вольтметром
- -: ваттметром
- -: омметром
- 5. Комплекс программных, технических, информационных, лингвистических, организационнотехнологических средств и действий квалифицированного персонала, предназначенный для решения задач планирования и управления различными видами деятельности предприятия, называют:
- -: АСУ ТП
- -: АСУП
- -: АСКУЭ
- -: АСДУ
- 6. Автоматизированная система, обеспечивающая дистанционный сбор информации с приборов коммерческого учета, а также передачу информации, называется:
- -: АСУ ТП
- -: АСУП
- -: АСКУЭ

- -: АСПУ
- 7. Совокупность технических и программных средств, предназначенных для автоматизации управления технологическим оборудованием на промышленных предприятиях, называется:
- -: АСУ ТП
- -: АСУП
- -: АСКУЭ
- -: АСДУ
- 8. Систему диспетчеризации и мониторинга инженерных систем называют:
- -: АСУ ТП
- -: АСУП
- -: АСКУЭ
- -: АСДУ
- 9. Распределительное устройство это:
- -: электроустановка, предназначенная для преобразования и распределения электроэнергии и состоящая из трансформаторов или других преобразователей электроэнергии, распределительных устройств, устройств управления и вспомогательных сооружений
- -: электроустановка, служащая для приема и распределения электроэнергии и содержащая коммутационные аппараты, сборные и соединительные шины (токоведущие части) и другие устройства -: электроустановка, предназначенная для передачи электроэнергии на расстояние
- 10. Подстанция это:
- -: электроустановка, предназначенная для преобразования и распределения электроэнергии и состоящая из трансформаторов или других преобразователей электроэнергии, распределительных устройств, устройств управления и вспомогательных сооружений
- -: электроустановка, служащая для приема и распределения электроэнергии и содержащая коммутационные аппараты, сборные и соединительные шины (токоведущие части) и другие устройства
- -: электроустановка, предназначенная для передачи электроэнергии на расстояние

2 семестр

Раздел 1. Техническое обеспечение АСТУ.

- 1. Элемент, который преобразует физическую величину в удобный для использования сигнал, называют:
- -: датчиком
- -: исполнительным механизмом
- -: контроллером
- -: регулирующим органом
- 2. Устройство, осуществляющее перемещение регулирующего органа, называют:
- -: датчиком
- -: исполнительным механизмом
- -: контроллером
- -: регулирующим органом
- 3. Датчики относятся к:
- -: уровню первичных средств автоматизации
- -: уровню УСО
- -: контроллерному уровню
- -: диспетчерскому уровню
- 4. Исполнительные механизмы относятся к:
- -: уровню первичных средств автоматизации
- -: уровню УСО
- -: контроллерному уровню
- -: диспетчерскому уровню
- 5. Автоматизированное рабочее место относится к:
- -: уровню первичных средств автоматизации

- -: уровню УСО
- -: контроллерному уровню
- -: диспетчерскому уровню
- 6. Преобразователи сигналов относятся к:
- -: уровню первичных средств автоматизации
- -: уровню УСО
- -: контроллерному уровню
- -: диспетчерскому уровню
- 7. Микропроцессорный контроллер, в едином конструктиве которого располагают процессор, память, фиксированное число каналов ввода/вывода и ряд других компонентов, называют:
- -: промышленным компьютером
- -: модульным контроллером
- -: моноблочным контроллером
- -: распределенным контроллером
- 8. Для ввода сигнала 4...20мА используется:
- -: аналоговый модуль ввода
- -: аналоговый модуль вывода
- -: дискретный модуль ввода
- -: дискретный модуль вывода
- 9. Для вывода сигнала 0...5мА используется:
- -: аналоговый модуль ввода
- -: аналоговый модуль вывода
- -: дискретный модуль ввода
- -: дискретный модуль вывода
- 10. Аналого-цифровой преобразователь (АЦП) является основным компонентом:
- -: аналогового модуля ввода
- -: аналогового модуля вывода
- -: дискретного модуля ввода
- -: дискретного модуля вывода

Раздел 2. Программное обеспечение АСТУ.

- 1.К группе текстовых языков программирования контроллеров по стандарту IEC 61131-3 относятся:
- -: IL и ST
- -: LD и FBD
- -: LD и SFC
- -: FBD и SFC
- 2. Язык программирования LD в соответствии со стандартом IEC 61131-3 относится к группе:
- -: текстовых языков
- -: графических языков
- -: языков графических схем
- -: не входит в стандарт
- 3. Язык программирования FBD в соответствии со стандартом IEC 61131-3 определяется как:
- -: список инструкций
- -: структурированный текст
- -: язык диаграмм функциональных блоков
- -: язык диаграмм лестничной логики
- 4. Язык диаграмм лестничной логики в соответствии со стандартом IEC 61131-3 обозначается символами:
- -: ST
- -: IL
- -: FBD
- -: LD

- 5. Программа, написанная на языке LD, состоит из:
- -: выражений, каждое из которых включает метки, комментарии, инструкции
- -: набора инструкций, выполняемых контроллером последовательно
- -: последовательности ступеней, содержащих графические элементы и ограниченных слева и справа условными шинами питания
- -: соединенных функциональных блоков, реализующих стандартные функции
- 6. Программа, написанная на языке FBD, состоит из:
- -: выражений, каждое из которых включает метки, комментарии, инструкции
- -: набора инструкций, выполняемых контроллером последовательно
- -: последовательности ступеней, содержащих графические элементы и ограниченных слева и справа условными шинами питания
- -: соединенных функциональных блоков, реализующих стандартные функции
- 7. Прямая обмотка устанавливает соответствующий битовый объект:
- -: в значение, равное результату, полученному в проверочной зоне
- -: в значение, равное инверсии от результата, полученного в проверочной зоне
- -: в 1, если в проверочной зоне получен результат, равный 1
- -: в 0, если в проверочной зоне получен результат, равный 1
- 8. Обмотка, устанавливающая соответствующий битовый объект в 0, если в проверочной зоне получен результат, равный 1, называется:
- -: прямой
- -: обратной
- -: устанавливающей
- -: сбрасывающей
- 9. В соответствии со стандартом IEC 61131-3 при составлении программ управления внутренние биты обозначаются символом:
- -: M
- -: S
- -: I
- -: Q
- 10. В соответствии со стандартом ІЕС 61131-3 метка обозначается:
- -: %M
- -: %L
- -: %S
- -: %K

Раздел 3. Информационные сети АСТУ.

- 1. Адресат получает информационный пакет без посредников в сети с топологией:
- -: звезда
- -: кольцо
- -: шина
- -: ни в одной из указанных топологий
- 2. Укажите топологию сети, в которой процесс подключения дополнительных узлов требует дополнительных аппаратных доработок со стороны уже работающих узлов сети:
- -: звезда
- -: кольцо
- -: шина
- -: ни одна из указанных топологий
- 3. Укажите основные компоненты толстого коаксиального кабеля:
- -: проводник, изоляция, разрывная нить
- -: проводник, диэлектрик, оплетка, внешняя оболочка
- -: проводник, диэлектрик, оплетка, изолирующая пленка, внешняя оболочка
- -: волокно в покрытии, гидрофобный гель, гофрированная броня, внешняя оболочка

4. Наибольшая скорость передачи данных может достигаться при использовании: -: волоконно-оптического кабеля -: коаксиального кабеля -: витой пары -: радиоканала
5. Максимальное расстояние передачи данных обеспечивает: -: инфракрасный канал -: радиоканал -: волоконно-оптический кабель -: коаксиальный кабель
6. Рабочие станции не предназначены для: -: отображения хода технологического процесса -: сигнализации аварийных ситуаций -: управления технологическим процессом -: реализации законов автоматического регулирования
7. Многопортовое устройство для повторения цифровых сигналов для витой пары называют: -: повторителями -: концентраторами -: хабами -: репитерами
8. Многопортовый мост называют: -: концентратором -: коммутатором -: маршрутизатором -: трансивером
9. Какой протокол сетей низовой автоматики реализует передачу данных посредством наложения частотно-модулированного цифрового сигнала на аналоговый 4,20мA: -: HART -: ASI -: Interbus-S -: DeviceNet
10. Режим, при котором передача информации между двумя физическими или логическими объектами в каждый момент времени осуществляется только в одном направлении, называют: -: симплексом -: полудуплексом -: дуплексом -: реверсом
Раздел 4. Состав проектной документации на АСТУ. 1. Укажите обозначение первичного измерительного преобразователя для измерения температуры: -: TE -: TG -: TI -: TT
2. Укажите обозначение прибора для измерения температуры показывающего, установленного по месту: -: TE -: TG -: TI -: TT
3. Укажите обозначение прибора для измерения температуры показывающего, установленного на

2.2 Оценочные средства при промежуточной аттестации
10. Укажите обозначение прибора для измерения перепада давлений, регистрирующего: -: PR -: PDR -: PC -: PS
9. Укажите обозначение прибора для измерения давления, регистрирующего: -: PR -: PDR -: PC -: PS
8. Укажите обозначение прибора для измерения температуры с контактным устройством: -: TR -: TJR -: TC -: TS
7. Укажите обозначение регулятора температуры: -: TR -: TJR -: TC -: TS
6. Укажите обозначение прибора для измерения температуры многоточечного, регистрирующего: -: TR -: TJR -: TC -: TS
5. Укажите обозначение прибора для измерения температуры одноточечного, регистрирующего: -: TR -: TJR -: TC -: TS
4. Укажите обозначение прибора для измерения температуры бесшкального с дистанционной передачей показаний: -: TE -: TG -: TI -: TT
-: TE -: TG -: TI -: TT

Формой промежуточной аттестации в 1 семестре является зачет, во 2 семестре - экзамен, в процессе которых определяется сформированность обозначенных в рабочей программе компетенций.

Инструментом измерения сформированности компетенций являются:

- ответы обучающихся на вопросы во время опроса;
- зачтенные отчеты обучающихся по практическим и(или) лабораторным работам;
- результаты тестирования.

При проведении промежуточного контроля в форме зачета обучающийся отвечает на два вопроса, выбранные случайным образом.

Опрос может проводиться в письменной и (или) устной, и (или) электронной форме.

Критерии оценивания при ответе на вопросы (зачет):

- 90-100 баллов при правильном и полном ответе на два вопроса;
- 80-89 баллов при правильном и полном ответе на один из вопросов и правильном, но не полном ответе на другой из вопросов;
- 60-79 баллов при правильном и неполном ответе только на один из вопросов;
- 0-59 баллов при отсутствии правильных ответов на вопросы.

Количество баллов	0-59	60-100
Шкала оценивания	не зачтено	зачтено

Примерный перечень вопросов к зачету (1 семестр):

- 1. Понятие автоматизации.
- 2. Исторические этапы развития автоматизации.
- 3. Автоматизированное и автоматическое управление.
- 4. Основные принципы управления.
- 5. Принцип программного управления.
- 6. Принцип управления «по отклонению».
- 7. Принцип управления «по возмущению».
- 8. Принцип комбинированного управления.
- 9. Характеристика АСУ ТП.
- 10. Характеристика АСТУ.
- 11. Характеристика АСУП.
- 12. Понятие и характеристика ТЭС.
- 13. Основные технологические процессы ТЭС.
- 14. Типовая АСТУ ТЭС (на выбор).
- 15. Понятие и характеристика ГЭС.
- 16. Основные технологические процессы ГЭС.
- 17. Типовая АСТУ ГЭС (на выбор).
- 18. Понятие и характеристика АЭС.
- 19. Основные технологические процессы АЭС.
- 20. Типовая АСТУ АЭС (на выбор).
- 21. Понятие и характеристика ВЭС.
- 22. Принцип работы ВЭС.
- 23. Типовая АСТУ ВЭС (на выбор).
- 24. Понятие и характеристика СЭС.
- 25. Принцип работы СЭС.
- 26. Типовая АСТУ СЭС (на выбор).
- 27. Понятие и характеристика электрической сети.
- 28. Принципы передачи электроэнергии.
- 29. Принцип распределения электроэнергии.
- 30. Типовая АСТУ электрической сети (на выбор).

При проведении промежуточного контроля в форме экзамена обучающийся отвечает на два вопроса, выбранные случайным образом.

Опрос может проводиться в письменной и (или) устной, и (или) электронной форме.

Критерии оценивания при ответе на вопросы (экзамен):

- 90-100 баллов при правильном и полном ответе на два вопроса;
- 80-89 баллов при правильном и полном ответе на один из вопросов и правильном, но не полном ответе на другой из вопросов;
- 60-79 баллов при правильном и неполном ответе только на один из вопросов;
- 0-59 баллов при отсутствии правильных ответов на вопросы.

Количество баллов	0-59	60-79	80-89	90-100
Шкала оценивания	неудовлетворительно	удовлетворительно	хорошо	отлично

Примерный перечень вопросов к экзамену (2 семестр):

1. Понятие датчика.

- 2. Классификация датчиков.
- 3. Принцип измерения температуры (на выбор).
- 4. Принцип измерения давления (на выбор).
- 5. Принцип измерения расхода (на выбор).
- 6. Принцип измерения уровня (на выбор).
- 7. Понятие исполнительного устройства.
- 8. Классификация и принцип работы исполнительных устройств.
- 9. Электрические исполнительные механизмы.
- 10. Пневматические исполнительные механизмы.
- 11. Регулятор. Устройство и функции в АСТУ.
- 12. Программируемый логический контроллер. Устройство и функции в АСТУ.
- 13. Оборудование автоматизированного рабочего места (АРМ) оператора.
- 14. Характеристика графических языков стандарта МЭК 61131-3-2016.
- 15. Характеристика текстовых языков стандарта МЭК 61131-3-2016.
- 16. SCADA-система. Функции в АСТУ.
- 17. Характеристика сетевого оборудования. Повторитель.
- 18. Характеристика сетевого оборудования. Маршрутизатор.
- 19. Характеристика сетевого оборудования. Шлюз.
- 20. Кабельные среды передачи данных.
- 21. Беспроводные среды передачи данных.
- 22. Топология информационной сети.
- 23. Методы доступа к линиям связи в информационной сети.
- 24. Понятия интерфейса и протокола.
- 25. Интерфейс RS-485.
- 26. Модель взаимодействия открытых систем (OSI-модель).
- 27. Протокол Modbus.
- 28. Протокол Profibus.
- 29. Протокол Ethernet.
- 30. Состав проектной документации АСТУ.

2.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующие этапы формирования компетенций

1. Текущий контроль успеваемости обучающихся, осуществляется в следующем порядке: в конце завершения освоения соответствующей темы обучающиеся, по распоряжению педагогического работника, убирают все личные вещи, электронные средства связи и печатные источники информации. Для подготовки ответов на вопросы обучающиеся используют чистый лист бумаги любого размера и ручку.

На листе бумаги обучающиеся указывают свои фамилию, имя, отчество (при наличии), номер учебной группы и дату проведения текущего контроля успеваемости.

Научно-педагогический работник устно задает вопросы, которые обучающийся может записать на подготовленный для ответа лист бумаги.

В течение установленного научно-педагогическим работником времени обучающиеся письменно формулируют ответы на заданные вопросы. По истечении указанного времени листы бумаги с подготовленными ответами обучающиеся передают научно-педагогическому работнику для последующего оценивания результатов текущего контроля успеваемости.

При подготовке ответов на вопросы обучающимся запрещается использование любых электронных и печатных источников информации. В случае обнаружения научно-педагогическим работником факта использования обучающимся при подготовке ответов на вопросы указанные источники информации оценка результатов текущего контроля соответствует 0 баллов и назначается дата повторного прохождения текущего контроля успеваемости.

Результаты текущего контроля доводятся до сведения обучающихся в течение трех учебных дней, следующих за днем проведения текущего контроля успеваемости.

Текущий контроль успеваемости обучающихся по результатам выполнения практических и (или) лабораторных работ осуществляется в форме отчета, который предоставляется научно-педагогическому работнику на бумажном и (или) электронном носителе. Научно-педагогический работник, после проведения оценочных процедур, имеет право вернуть обучающемуся отчет для последующей корректировки с указанием перечня несоответствий. Обучающийся обязан устранить все указанные несоответствия и направить отчет научно-педагогическому работнику в срок, не превышающий трех учебных дней, следующих за днем проведения текущего контроля успеваемости. Результаты текущего контроля доводятся до сведения обучающихся в течение трех учебных дней,

следующих за днем проведения текущего контроля успеваемости.

Текущий контроль успеваемости в форме тестирования обучающихся осуществляется в следующем порядке: в конце завершения освоения соответствующего раздела (темы) обучающиеся выполняют тестовые задания в ЭИОС КузГТУ. Результаты тестирования формируются ЭИОС автоматически. Обучающиеся, которые не прошли текущий контроль успеваемости в установленные сроки, обязаны пройти его в срок до начала процедуры промежуточной аттестации по дисциплине в соответствии с расписанием промежуточной аттестации.

Результаты прохождения процедур текущего контроля успеваемости обучающихся учитываются при оценивании результатов промежуточной аттестации обучающихся.

- 2. Промежуточная аттестация обучающихся проводится после завершения обучения по дисциплине в семестре в соответствии с календарным учебным графиком и расписанием промежуточной аттестации. Для успешного прохождения процедуры промежуточной аттестации по дисциплине обучающиеся должны:
- 1) получить положительные результаты по всем предусмотренным рабочей программой формам текущего контроля успеваемости;
- 2) получить положительные результаты аттестационного испытания.

Для успешного прохождения аттестационного испытания обучающийся в течение времени, установленного научно-педагогическим работником, осуществляет подготовку ответов на два вопроса, выбранных в случайном порядке.

Для подготовки ответов используется чистый лист бумаги и ручка.

На листе бумаги обучающиеся указывают свои фамилию, имя, отчество (при наличии), номер учебной группы и дату проведения аттестационного испытания.

При подготовке ответов на вопросы обучающимся запрещается использование любых электронных и печатных источников информации.

По истечении указанного времени, листы с подготовленными ответам на вопросы обучающиеся передают научно-педагогическому работнику для последующего оценивания результатов промежуточной аттестации.

В случае обнаружения научно-педагогическим работником факта использования обучающимся при подготовке ответов на вопросы указанные источники информации – оценка результатов промежуточной аттестации соответствует 0 баллов и назначается дата повторного прохождения аттестационного испытания.

Результаты промежуточной аттестации обучающихся размещаются в ЭИОС КузГТУ.

Текущий контроль успеваемости и промежуточная аттестация обучающихся могут быть организованы с использованием ЭИОС КузГТУ, порядок и формы проведения текущего контроля успеваемости и промежуточной аттестации обучающихся при этом не меняется.