минобрнауки россии

федеральное государственное бюджетное образовательное учреждение высшего образования

«Кузбасский государственный технический университет имени Т. Ф. Горбачева»

ДИ	ректор		
"	»	20	Γ.

Фонд оценочных средств дисциплины

Флотационные процессы обогащения

Специальность 21.05.04 Горное дело Специализация / направленность (профиль) Обогащение полезных ископаемых

Присваиваемая квалификация "Горный инженер (специалист)"

Формы обучения заочная

5.1. Паспорт фонда оценочных средств

Планируемые результаты обучения по дисциплине

Дисциплина направлена на формирование следующих компетенций выпускника:

Δ	лина направл	17	n	¥7
-	Компетенции,	индикатор достижения компетенции	Результаты обучения по дисциплине	Уровень
-	формируемые в результате			
	освоения			
	дисциплины			
Опрос по	ОПК-4;	способен с естественнонаучных	Знать строение, химический и минеральный	Высокий
контрольным	ПК-12;		состав земной коры, морфологические	
вопросом	ПК-16; ПСК-6.1			средний
подготовка			месторождений твердых полезных ископаемых	
отчетов по			при решении задач по рациональному и	
лабораторным			комплексному освоению георесурсного	
работам, тестирование			потенциала недр; структуру и взаимосвязи комплексов по обогащению полезных	
тестирование			ископаемых и их функциональное назначение;	
			закономерности разделения минералов на	
			основе различия их физических и химических	
			свойств; основы разработки схем обогащения	
		выполняемых работ, анализировать	полезных ископаемых методом флотации;	
			принцип действия, устройство и технические характеристики флотационных машин; процессы	
			и технологии переработки и обогащения	
			твёрдых полезных ископаемых флотационными	
			методами; методы выбора и расчёта	
			технологических флотационных схем	
			обогащения и флотационного оборудования;	
			физические и химические свойства полезных	
			ископаемых, их структурно-механические	
		своиствах и характеристиках минерального сырья и вмещающих	особенности; научные термины в области обогащения полезных ископаемых	
		минерального сырых и ымещающих пород.	флотационными методами.	
			Уметь с естественнонаучных позиций оценивать	
			строение, химический и минеральный состав	
			земной коры, морфологические особенности и	
			генетические типы месторождений твердых	
			полезных ископаемых при решении задач по рациональному и комплексному освоению	
			георесурсного потенциала недр; управлять	
			стабильностью флотационного процесса;	
			синтезировать и критически резюмировать	
			полученную информацию; рассчитывать	
			основные параметры технологии флотационного	
			процесса и оборудования (флотационного);	
			анализировать устойчивость флотационного процесса и качество продуктов флотации;	
			рассчитывать оптимальный комплекс	
			флотационного оборудования для реализации	
			технологической схемы обогащения и	
			обосновывать оптимальные режимы ведения	
			технологического процесса; анализировать	
			качество продуктов флотации; свойства и	
			характеристики минерального сырья и вмещающих пород.	
			Владеть способностью с естественнонаучных	
			позиций оценивать строение, химический и	
			минеральный состав земной коры,	
			морфологические особенности и генетические	
			типы месторождений твердых полезных	
			ископаемых при решении задач по рациональному и комплексному освоению	
			рациональному и комплексному освоению георесурсного потенциала недр; готовностью	
			оперативно устранять нарушения	
			производственных процессов, вести первичный	
			учет выполняемых работ, анализировать	
			оперативные и текущие показатели	
			производства, обосновывать предложения по	
			совершенствованию организации производства; готовностью выполнять экспериментальные и	
			готовностью выполнять экспериментальные и лабораторные исследования, интерпретировать	
			полученные результаты, составлять и защищать	
			отчеты; методами эффективной эксплуатации	
			горно-обогатительной техники при подготовке	
			твердых полезных ископаемых к обогащению;	
			научной терминологией в области обогащения	
			полезных ископаемых флотационными	
			методами; способностью анализировать горно-	
			геологическую информацию о свойствах и характеристиках минерального сырья и	
			вмещающих пород.	
	U		компетенция сформирована частично	

Высокий уровень достижения компетенции - компетенция сформирована частично, рекомендованные оценки: отлично, хорошо, зачтено.

Средний уровень достижения компетенции - компетенция сформирована частично, рекомендованные оценки: хорошо, удовлетворительно, зачтено.

Низкий уровень достижения компетенции - компетенция не сформирована частично, оценивается неудовлетворительно или не зачтено.

5.2. Контрольные задания или иные материалы

Текущий контроль успеваемости и аттестационные испытания обучающихся могут быть организованы с использованием ресурсов ЭИОС КузГТУ. Полный перечень оценочных материалов расположен в ЭИОС КузГТУ.: https://el.kuzstu.ru/login/index.php.

Текущий контроль успеваемости и аттестационные испытания могут проводиться в письменной и (или) устной, и (или) электронной форме.

Содержание контрольной работы

Контрольная работа содержит задачи по темам, отражающим содержание разделов:

- Технология флотационного процесса;
- Флотационные машины;
- Практика флотации.

В контрольной работе выполняется расчёт по исходным данным, согласно варианту. Вопросы, рассматриваемые в контрольной работе, изучаются студентами самостоятельно. На установочной лекции выдается задание согласно методическим указаниям по самостоятельной работе. Изучение вопросов и выполнение работы производится в течение семестра, в котором изучается эта дисциплина. Работа в рукописном или электронном виде сдается перед сессией преподавателю. Возникающие в процессе работы вопросы по решению заданий можно разрешить в процессе консультации с преподавателем дистанционно или лично.

В рамках контрольной работы выполняются четыре задания:

Задание 1. Расчет принципиальной схемы обогащения руды.

Задание 2. Описать одну из возможных схем обогащения руды с выделением товарных концентратов, согласно варианту задания.

Задание 3. Описать реагентные режимы обогащения каждого из полезных компонентов (по каждому циклу обогащения): назначение каждого реагента, расход, место подачи.

Задание 4. Выбрать и начертить схему флотационной машины. Описать конструкцию и принцип действия выбранной машины, ее достоинства и недостатки.

При зачтении контрольной работы оценивается правильность и полнота выполнения каждого из заданий.

Критерии оценивания:

- 100 баллов при правильном и полном выполнении всех заданий;
- 75...99 баллов при правильном и полном выполнении первого задания и правильном, но не полном выполнении одного из заданий;
- 50...74 баллов при правильном и полном выполнении первого задания и правильном, но не полном выполнении двух последующих заданий;
- 25...49 баллов при правильном и полном выполнении первого задания и правильном, но не полном выполнении трех последующих заданий;
 - 0...24 баллов при отсутствии правильных и полных выполнений всех заданий.

Количество баллов	024	2549	5064	6574	7599	100
Шкала оценивания	Не зачтен	0	•	Зачтено		

5.2.1.Оценочные средства при текущем контроле

Текущий контроль по темам дисциплины заключается в опросе по контрольным вопросам, курсовому проектированию, подготовке отчетов по лабораторным работам, тестированию.

Опрос по контрольным вопросам:

При проведении текущего контроля обучающимся будет письменно, либо устно задано два вопроса, на которые они должны дать ответы.

Например:

Тема 1. Введение

- 1. Актуальность применения флотационных методов обогащения для полиметаллических, тонковкрапленных руд, угольных шламов и т.д.
 - 2. Классификация флотационных процессов. Разновидности пенной флотации.
 - 3. Гипотезы элементарного акта флотации.

Тема 2. Теоретические основы флотационного процесса

4. Гипотеза смачивания или краевого угла. Периметр смачивания. Краевой угол (равновесный и гистерезисный).

- 5. Силы поверхностного натяжения, действующие на единицу длины периметра смачивания. Определение равновесного краевого угла через силы поверхностного натяжения. Зависимость явления смачивания от величины краевого угла.
- 6. Гистерезис смачивания. Сила гистерезиса. Изменение краевого угла с учетом гистерезиса при наступлении жидкой фазы на газообразную и наоборот. Закономерности гистерезиса. Значение гистерезиса для флотации.
 - 7. Флотационная сила. Зависимость флотационной силы от краевого угла.
- 8. Флотационная сила. Угол формы. Угол флотации. Зависимость флотационной силы от сил поверхностного натяжения, краевого угла и периметра смачивания частицы.
 - 9. Условие флотационного равновесия. Уравнение Фрумкина.
 - 10. Гидратный слой. Условие образования.
- 11. Зависимость удельной поверхностной энергии слоя воды между частицей и пузырьком от его толщины для гидрофобной и гидрофильной поверхности частицы.
 - 12. Флотационные реагенты. Классификация. Назначение.

Тема 3. Технология флотационного процесса

- 13. Условия, влияющие на результат флотации.
- 14. Влияние крупности зерен на флотацию.
- 15. Влияние тонких шламов на результаты флотации.
- 16. Влияние плотности пульпы на флотацию.
- 17. Влияние реагентного режима на результаты флотации.
- 18. Влияние аэрации и перемешивания пульпы на результаты флотации.
- 19. Кинетика флотации.
- 20. Влияние интенсивности съема пены на качество флотоконцентрата.
- 21. Флотационные схемы. Операции флотации. Циклы. Стадии.
- 22. Особенности флотационных схем при обогащении полиметаллических руд. Зависимость качества руд от схемы флотации.
 - 23. Влияние оптимального потока и температуры пульпы на флотацию.

Тема 4. Флотационные машины.

- 24. Флотационные машины. Требования, предъявляемые к флотомашинам.
- 25. Типы флотомашин по способу передачи нагрузки из камеры в камеру, по способу аэрации пульпы.
- 26. Механические флотационные машины. «Механобр», МФР. Конструкция. Принцип действия. Достоинства и недостатки. Требования к конструкции.
- 27. Явление кавитации. Условие возникновения микропузырьков в пульпе в камерах механических и пневматических машин.
 - 28. Флотационные машины угольные. МФУ. Конструкция. Принцип действия.
 - 29. Пневмомеханические флотационные машины. ФПР. Конструкция. Принцип действия.
- 30. Пневматические флотационные машины. Аэролифтные флотационные машины. Принцип действия.
 - 31. Классификация минералов по флотируемости по Эйгелесу М.А.

Тема 5. Практика флотации

- 32. Флотация минералов с высокой естественной гидрофобностью. Флотация каменного угля.
- 33. Флотация минералов с высокой естественной гидрофобностью. Флотация молибденовых руд.
- 34. Флотация самородных металлов. Флотация золотосодержащих руд.
- 35. Флотация полиметаллических сульфидных руд. Особенности флотационных схем при обогащении полиметаллических руд.
- 36. Флотация полиметаллических сульфидных руд. Особенности подбора флотационных реагентов при обогащении полиметаллических руд.
 - 37. Флотация медно-никелевых руд.
- 38. Флотация окисленных руд цветных металлов на примере окисленных медных руд. Метод Мостовича.
 - 39. Флотация солей щелочноземельных металлов. Флотация шеелитовых руд. Метод Петрова.
 - 40. Флотация солей шелочноземельных металлов. Флотация баритовых руд.

Критерии оценивания:

- 85-100 баллов при правильном и полном ответе на два вопроса;
- 65-84 баллов при правильном и полном ответе на один из вопросов и правильном, но не полном ответе на другой из вопросов;
 - 25-64 баллов при правильном и неполном ответе только на один из вопросов;
 - 0-24 баллов при отсутствии правильных ответов на вопросы.

Количество баллов 0-24 25-64 65-84 85-100

Шкала оценивания неуд удовл хорошо отлично

Компьютерное тестирование

При проведении текущего контроля обучающимся необходимо ответить на тестирования по каждому разделу / теме/... Тестирование может быть организовано с использованием ресурсов ЭИОС КузГТУ.

Примеры заданий

1. Какие классы крупности частиц руды подвергаются обогащению флотационными методами?

0-3 мм

1-3 мм

только менее 0, 074 мм

не менее 0,074 мм

менее 0,5 (1 мм)

2. Какой из типов флотационных процессов не используется в настоящее время?

пенная флотация

флотация на жировой поверхности

масляная флотация

химическая флотация

электрофлотация

и т.п. в соответствии с рабочей программой.

Критерии оценивания:

Критерии оценивания:

- 85- 100 баллов при ответе на <84% вопросов
- 64 84 баллов при ответе на >64 и <85% вопросов
- 50 64 баллов при ответе на >49 и <65% вопросов
- 0 49 баллов при ответе на <45% вопросов

Количество баллов	0-49	50-64	65-84	85-100
Шкала оценивания	неудовлетворительно	удовлетворительно	хорошо	отлично

Отчеты по лабораторным работам:

По каждой работе обучающиеся самостоятельно оформляют отчеты в электронном формате (согласно перечню лабораторных и(или) практических работ п.4 рабочей программы).

Содержание отчета:

- 1.Тема работы.
- 2. Задачи работы.
- 3. Краткое описание хода выполнения работы.
- 4. Ответы на задания или полученные результаты по окончании выполнения работы (в зависимости от задач, поставленных в п. 2).
 - 5. Выводы

Контрольные вопросы к лабораторному практикуму:

Лабораторная работа № 1. Основные виды флотационного процесса

- 1. Какие существуют разновидности флотационных процессов разделения минералов?
- 2. Какой вид флотации используется при флотогравитации?
- 3. Для каких руд применяется процесс пенной сепарации?

Лабораторная работа № 2. Определение краевого угла смачивания поверхности различных минералов

- 1. Какие гипотезы элементарного акта флотации существовали в истории развития флотации?
- 2. В чем заключается гипотеза смачивания?
- 3. Что представляет собой явление смачивания?
- 4. Определите понятия «гидрофобные и гидрофильные частицы».
- 5. Дайте определение краевому углу смачивания.
- 6. Со стороны какой из фаз принято измерять краевой угол?
- 7. Дайте определение гистерезису смачивания.
- 8. Что такое гистерезисная сила?
- 9. Какую роль играет гистерезис при отрыве частицы от пузырька и при закреплении ее?

Лабораторная работа № 3. Измерение силы отрыва частицы от пузырька воздуха.

- 1. Что представляет собой явление смачивания? Определите понятия «гидрофобные и гидрофильные частицы».
 - 2. Дайте определение краевому углу смачивания.
 - 3. Дайте определение гистерезису смачивания.
- 4. Что представляют собой силы поверхностного натяжения, действующие на единицу длины периметра смачивания?

- 5. Как связан равновесный краевой угол с силами поверхностного натяжения?
- 6. Как влияет величина краевого угла на явление смачивания?
- 7. Что представляет собой флотационная сила, и от каких физических величин она зависит?
- 8. В чем заключается роль двойного электрического и гидратных слоев на границе раздела фаз при закреплении минералов к пузырьку?
- 9. Как изменяется энергия прослоя воды между пузырьком и частицей при элементарном акте флотации.
 - 10. Объясните понятия «сухая» и «мокрая» флотации.
 - 11. Что такое угол формы, и какое значение имеет при флотации?
 - 12. Напишите условие флотационного равновесия.

Лабораторная работа № 4. Изучение кинетики флотационного процесса

- 1. В чем заключается процесс флотации?
- 2. Чем отличаются гидрофобные минералы от гидрофильных?
- 3. Какие классы крупности частиц руды подвергаются обогащению флотационными методами?
 - 4. Расскажите, какие вы знаете типы флотационных процессов?
 - 5. Что представляет собой пенная флотация минералов на пузырьках воздуха?
- 6. В чем заключается актуальность применения флотационных методов обогащения, например, для полиметаллических, тонковкрапленных руд, угольных шламов и т. д.?
- 7. Какие типы флотационных машин по способу передачи нагрузки из камеры в камеру вам известны?
 - 8. Какие типы флотационных машин по способу аэрации пульпы вы знаете?
- 9. Опишите конструкцию, принцип действия, достоинства и недостатки, требования к конструкции механической флотационной машины «Механобр».
 - 10. В чем особенность флотационных угольных машин МФУ?
- 11. О чем свидетельствует выпуклая форма кривой изменения коэффициента удельной скорости флотации с течением времени?
- 12. О чем свидетельствует вогнутая форма кривой изменения коэффициента удельной скорости флотации с течением времени?

Лабораторная работа № 5. Исследование флотации с применением планирования многофакторного эксперимента для получения оптимальных результатов.

- 1. Каким образом для исследования флотации можно применить методы планирования многофакторного эксперимента для получения оптимальных результатов?
 - 2. Какие методы планирования многофакторного эксперимента можно применить? При защите работы обучающимся будет задано два вопроса, на которые они должны дать ответы.

Критерии оценивания:

- 100 баллов при правильном и полном ответе на два вопроса;
- 75...99 баллов при правильном и полном ответе на один из вопросов и правильном, но не полном ответе на другой из вопросов;
- 50...74 баллов при правильном и неполном ответе на два вопроса или правильном и полном ответе только на один из вопросов;
 - 25...49 баллов при правильном и неполном ответе только на один из вопросов;
 - 0...24 баллов при отсутствии правильных ответов на вопросы.

Количество баллов	024	2549	5064	6574	7599	100
Шкала оценивания	Не зачтено			Зачтено		

2.2 Оценочные средства при промежуточной аттестации

Формой промежуточной аттестации является экзамен/зачет, в процессе которого определяется сформированность обозначенных в рабочей программе компетенций.

Инструментом измерения сформированности компетенций являются:

- зачтенные отчеты обучающихся по лабораторным работам;
- положительно оцененные результаты тестирования;
- положительно оцененный курсовой проект;
- ответы обучающихся на вопросы во время опроса.

и т.п. в соответствии с рабочей программой.

При проведении промежуточного контроля обучающийся отвечает на 2 вопроса выбранных случайным образом, тестировании и т.п. в соответствии с рабочей программой... Опрос может

проводиться в письменной и (или) устной, и (или) электронной форме.

В процессе аттестации студенту дается билет, включающий два вопроса по различным разделам лекционного курса. К аттестации допускается студент при выполнении всех заданий в течении семестра. Возникающие в процессе изучения материалов по лекционному курсу вопросы можно разрешить в процессе консультации с преподавателем дистанционно или лично.

Вопросы к экзамену по дисциплине «Флотационные процессы обогащения»

- 1. Актуальность применения флотационных методов обогащения для полиметаллических, тонковкрапленных руд, угольных шламов и т.д.
 - 2. Классификация флотационных процессов. Разновидности пенной флотации.
 - 3. Гипотезы элементарного акта флотации.
- 4. Гипотеза смачивания или краевого угла. Периметр смачивания. Краевой угол (равновесный и гистерезисный).
- 5. Силы поверхностного натяжения, действующие на единицу длины периметра смачивания. Определение равновесного краевого угла через силы поверхностного натяжения. Зависимость явления смачивания от величины краевого угла.
- 6. Гистерезис смачивания. Сила гистерезиса. Изменение краевого угла с учетом гистерезиса при наступлении жидкой фазы на газообразную и наоборот. Закономерности гистерезиса. Значение гистерезиса для флотации.
 - 7. Флотационная сила. Зависимость флотационной силы от краевого угла.
- 8. Флотационная сила. Угол формы. Угол флотации. Зависимость флотационной силы от сил поверхностного натяжения, краевого угла и периметра смачивания частицы.
 - 9. Условие флотационного равновесия. Уравнение Фрумкина.
 - 10. Гидратный слой. Условие образования.
- 11. Зависимость удельной поверхностной энергии слоя воды между частицей и пузырьком от его толщины для гидрофобной и гидрофильной поверхности частицы.
 - 12. Флотационные реагенты. Классификация. Назначение.
 - 13. Условия, влияющие на результат флотации.
 - 14. Влияние крупности зерен на флотацию.
 - 15. Влияние тонких шламов на результаты флотации.
 - 16. Влияние плотности пульпы на флотацию.
 - 17. Влияние реагентного режима на результаты флотации.
 - 18. Влияние аэрации и перемешивания пульпы на результаты флотации.
 - 19. Кинетика флотации.
 - 20. Влияние интенсивности съема пены на качество флотоконцентрата.
 - 21. Флотационные схемы. Операции флотации. Циклы. Стадии.
- 22. Особенности флотационных схем при обогащении полиметаллических руд. Зависимость качества руд от схемы флотации.
 - 23. Влияние оптимального потока и температуры пульпы на флотацию.
 - 24. Флотационные машины. Требования, предъявляемые к флотомашинам.
- 25. Типы флотомашин по способу передачи нагрузки из камеры в камеру, по способу аэрации пульпы.
- 26. Механические флотационные машины. «Механобр», МФР. Конструкция. Принцип действия. Достоинства и недостатки. Требования к конструкции.
- 27. Явление кавитации. Условие возникновения микропузырьков в пульпе в камерах механических и пневматических машин.
 - 28. Флотационные машины угольные. МФУ. Конструкция. Принцип действия.
 - 29. Пневмомеханические флотационные машины. ФПР. Конструкция. Принцип действия.
- 30. Пневматические флотационные машины. Аэролифтные флотационные машины. Принцип действия.
 - 31. Классификация минералов по флотируемости по Эйгелесу М.А.
 - 32. Флотация минералов с высокой естественной гидрофобностью. Флотация каменного угля.
 - 33. Флотация минералов с высокой естественной гидрофобностью. Флотация молибденовых руд.
 - 34. Флотация самородных металлов. Флотация золотосодержащих руд.
- 35. Флотация полиметаллических сульфидных руд. Особенности флотационных схем при обогащении полиметаллических руд.
- 36. Флотация полиметаллических сульфидных руд. Особенности подбора флотационных реагентов при обогащении полиметаллических руд.
 - 37. Флотация медно-никелевых руд.
- 38. Флотация окисленных руд цветных металлов на примере окисленных медных руд. Метод Мостовича.

- 39. Флотация солей щелочноземельных металлов. Флотация шеелитовых руд. Метод Петрова.
- 40. Флотация солей щелочноземельных металлов. Флотация баритовых руд.

При проведении промежуточной аттестации обучающимся будет задано два вопроса, на которые они должны дать ответы.

Критерии оценивания:

- 100 баллов при правильном и полном ответе на два вопроса;
- 75...99 баллов при правильном и полном ответе на один из вопросов и правильном, но не полном ответе на другой из вопросов;
- 50...74 баллов при правильном и неполном ответе на два вопроса или правильном и полном ответе только на один из вопросов;
 - 25...49 баллов при правильном и неполном ответе только на один из вопросов;
 - 0...24 баллов при отсутствии правильных ответов на вопросы.

Количество баллов	024	2549	5074		7599	100
Шкала оценивания	неудовлет	творительно	удовлетво	рительно	хорошо	отлично

Аттестация курсового проекта

Проект состоит из пояснительной записки и графической части из трех технологической схем флотационного процесса, представленного в трех вариантах: качественно-количественной, водношламовой и схемы цепи аппаратов на листах формата А4. В записке должны быть отображены следующие разделы: задание, выданного руководителем, составленные технологические флотационные схемы, содержащие все рассчитанные технологические показатели, основное оборудование. Задания должны быть выполнены согласно методическим указаниям для курсовой работы и написаны четко и разборчиво. Возникающие в процессе работы вопросы по решению заданий можно разрешить в процессе консультации с преподавателем дистанционно или лично. Студент обязан защитить принятые решения и проведенные расчеты. Дифференцированная аттестация проводится при наличии допущенной к аттестации работы. Допущенной к защите считается работа в случае выполнения всех поставленных задач.

При проведении аттестации курсового проекта обучающимся будет задано три вопроса, на которые они должны дать ответы. Например:

- 1. Опишите конструкцию, принцип действия, достоинства и недостатки выбранной флотационной машины.
 - 2. Какие реагенты используете при флотации руды?
 - 3. Как на практике обогащаются данные руды?

Критерии оценивания:

- 100 баллов при правильном и полном ответе на три вопроса;
- 75...99 баллов при правильных и полных ответах на два вопроса и правильном, но не полном ответе на один из последующих вопросов;
- 50...74 баллов при правильном и полном ответе на один из вопросов и правильных, но не полных ответах на последующие вопросы;
 - 25...49 баллов при правильных и неполных ответах на три вопроса;
 - 0...24 баллов при отсутствии правильных ответов на вопросы.

Количество баллов	024	2549	5074	7599	100
Шкала оценивания	неудовлет	творительно	удовлетворительно	хорошо	отлично

2.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующие этапы формирования компетенций

1. Текущий контроль успеваемости обучающихся, осуществляется в следующем порядке: в конце завершения освоения соответствующей темы обучающиеся, по распоряжению педагогического работника, убирают все личные вещи, электронные средства связи и печатные источники информации.

Для подготовки ответов на вопросы, обучающиеся используют чистый лист бумаги любого размера и ручку. На листе бумаги обучающиеся указывают свои фамилию, имя, отчество (при наличии), номер учебной группы и дату проведения текущего контроля успеваемости.

Научно-педагогический работник устно задает два вопроса, которые обучающийся может записать на подготовленный для ответа лист бумаги.

В течение установленного научно-педагогическим работником времени обучающиеся письменно

формулируют ответы на заданные вопросы. По истечении указанного времени листы бумаги с подготовленными ответами обучающиеся передают научно-педагогическому работнику для последующего оценивания результатов текущего контроля успеваемости.

При подготовке ответов на вопросы обучающимся запрещается использование любых электронных и печатных источников информации. В случае обнаружения научно-педагогическим работником факта использования, обучающимся при подготовке ответов на вопросы указанные источники информации – оценка результатов текущего контроля соответствует 0 баллов и назначается дата повторного прохождения текущего контроля успеваемости.

Текущий контроль успеваемости обучающихся по результатам выполнения лабораторных и (или) практических работ осуществляется в форме отчета, который предоставляется научно-педагогическому работнику на бумажном и (или) электронном носителе. Научно-педагогический работник, после проведения оценочных процедур, имеет право вернуть обучающемуся отчет для последующей корректировки с указанием перечня несоответствий. Обучающийся обязан устранить все указанные несоответствия и направить отчет научно-педагогическому работнику в срок, не превышающий трех учебных дней, следующих за днем проведения текущего контроля успеваемости.

Результаты текущего контроля доводятся до сведения обучающихся в течение трех учебных дней, следующих за днем проведения текущего контроля успеваемости.

Обучающиеся, которые не прошли текущий контроль успеваемости в установленные сроки, обязаны пройти его в срок до начала процедуры промежуточной аттестации по дисциплине в соответствии с расписанием промежуточной аттестации.

Результаты прохождения процедур текущего контроля успеваемости обучающихся учитываются при оценивании результатов промежуточной аттестации обучающихся.

1. Промежуточная аттестация обучающихся проводится после завершения обучения по дисциплине в семестре в соответствии с календарным учебным графиком и расписанием промежуточной аттестации.

Для успешного прохождения процедуры промежуточной аттестации по дисциплине обучающиеся должны:

- 1. получить положительные результаты по всем предусмотренным рабочей программой формам текущего контроля успеваемости;
- 2. получить положительные результаты аттестационного испытания.

Для успешного прохождения аттестационного испытания обучающийся в течение времени, установленного научно-педагогическим работником, осуществляет подготовку ответов на два вопроса, выбранных в случайном порядке.

Для подготовки ответов используется чистый лист бумаги и ручка.

На листе бумаги обучающиеся указывают свои фамилию, имя, отчество (при наличии), номер учебной группы и дату проведения аттестационного испытания.

При подготовке ответов на вопросы обучающимся запрещается использование любых электронных и печатных источников информации.

По истечении указанного времени, листы с подготовленными ответам на вопросы обучающиеся передают научно-педагогическому работнику для последующего оценивания результатов промежуточной аттестации.

В случае обнаружения научно-педагогическим работником факта использования, обучающимся при подготовке ответов на вопросы указанные источники информации - оценка результатов промежуточной аттестации соответствует 0 баллов и назначается дата повторного прохождения аттестационного испытания.

Результаты промежуточной аттестации обучающихся размещаются в ЭИОС КузГТУ.

Текущий контроль успеваемости и промежуточная аттестация обучающихся могут быть организованы с использованием ЭИОС КузГТУ, порядок и формы проведения текущего контроля успеваемости и промежуточной аттестации, обучающихся при этом не меняется.