минобрнауки россии

федеральное государственное бюджетное образовательное учреждение высшего образования

«Кузбасский государственный технический университет имени Т. Ф. Горбачева»

Горный институт

подписано эп кузгту

Горный институт Директор

Дата: 19.06.2024 12:06:09

А.Н. Ермаков

Фонд оценочных средств дисциплины

Физика горных пород

Специальность 21.05.04 Горное дело Специализация / направленность (профиль) Открытые горные работы

Присваиваемая квалификация "Горный инженер (специалист)"

Формы обучения очная

5.1 Паспорт фонда оценочных средств

Планируемые результаты обучения по дисциплине (модулю)
Дисциплина направлена на формирование следующих компетенций выпускника:

Формы текущего контроля	Компетенции, формируемые в результате освоения дисциплины	Индикаторы достижения компетенции	Результаты обучения по дисциплине	Уровень *
Опрос по	ПК-1	Обосновывает	Знать:	Высокий
контрольным	Способен владеть методами	стратегию	основные нормативные	или
вопросам при	геолого-промышленной	комплексного,	документы и	средний
защите	оценки месторождений		технические	
			информационные	
	ископаемых, навыками		ресурсы,	
-	<u>-</u>		регламентирующие	
	геологических условий, геодезическими и	l I	_	
			параметров физических свойств	
	маркшендерекими измерениями, навыками		горных пород и	
	разработки проектной и			
	технической документации	с позиции их	лабораторных и	
	с учетом требований		натурных условиях.	
	промышленной	физико-технических	Уметь:	
	безопасности, методами			
		и породного массива.	технические средства	
	закономерностей		для определения	
	поведения и управления		параметров физико-	
	свойствами массива горных		технических свойств	
	пород в процессах добычи и переработки		горных пород и	
	перераоотки		состояния породного массива, а также	
			воздействующих на них	
			различных физических	
			полей, и оценивать их	
			влияние на показатели	
			эффективности,	
			промышленной и	
			экологической	
			безопасности	
			технологических	
			процессов горного	
			производства. Владеть:	
			навыками	
			планирования,	
			подготовки и	
			выполнения	
			экспериментов для	
			оценки параметров	
			физико-технических	
			свойств горных пород и	
			состояния породного	
			массива в	
			лабораторных и натурных условиях, а	
			также анализа и	
			интерпретации	
			полученных	
			результатов	
			исследований с	
			применением	
			современных методов	
			математической	
			обработки с	
			последующим	
			составлением и защитой технических	
		l .	эащитои технических	

Формы текущего контроля	Компетенции, формируемые в результате освоения дисциплины	Индикаторы достижения компетенции	Результаты обучения по дисциплине	Уровень *
-------------------------------	--	---	--------------------------------------	-----------

* Высокий уровень достижения компетенции - компетенция сформирована частично, рекомендованные оценки: отлично, хорошо, зачтено.

Средний уровень достижения компетенции - компетенция сформирована частично, рекомендованные оценки: хорошо, удовлетворительно, зачтено.

Низкий уровень достижения компетенции - компетенция не сформирована частично, оценивают неудовлетворительно или не зачтено.

5.2 Типовые контрольные задания или иные материалы

5.2.1 Оценочные средства при текущем контроле успеваемости

Оценку текущей успеваемости обучающихся проводят на аудиторных занятиях в контрольные недели в виде опроса по контрольным вопросам при защите отчётов о лабораторных работах.

По каждой выполненной лабораторной работе (согласно п. 4.2 рабочей программы) обучающийся самостоятельно составляет индивидуальный отчёт в виде текстового документа. Отчёт должен иметь следующую структуру:

- 1) Титульный лист (по образцу).
- 2) Цель работы.
- 3) Применяемые оборудование, приборы, инструменты, материалы.
- 4) Теоретические основы рассматриваемой темы с формулами, схемами, таблицами.
- 5) Краткое описание порядка выполнения работы,
- 6) Выполненные расчёты, составленные таблицы и иллюстрации в виде схем, графиков.
- 7) Краткие выводы.

Оценочными средствами при защите отчётов о лабораторных работах являются: качество оформления отчёта и два контрольных вопроса из списка помещённых в лабораторном практикуме в конце описания соответствующей лабораторной работы, на которые обучающийся может дать ответы и устно и (или) письменно, например:

- 1) Что понимают под структурой горной породы?
- 2) Какие факторы влияют на величину насыпной массы горных пород?

Критерии оценивания защиты отчёта:

- 85-100 баллов, если отчёт содержит все требуемые структурные элементы, получены правильные и полные ответы на два контрольных вопроса;
- 65-84 балла, если отчёт содержит все требуемые структурные элементы, получены правильный и полный ответ на один контрольный вопрос и неполный ответ на второй вопрос;
- 50-64 баллов, если отчёт содержит не все требуемые структурные элементы, получены неполные ответы на два контрольных вопроса;
- менее 49 баллов, если отчёт содержит не все требуемые структурные элементы, получен правильный ответ только на один контрольный вопрос.

Количество баллов	0 - 49	50 - 64	65 - 84	85 - 100
Оценка	Неудовлетворительно	Удовлетворительно	Хорошо	Отлично

Контрольные вопросы при защите лабораторных работ по темам:

- 1 Строение горных пород
- 1. На какие группы делят минералы по их генезису?
- 2. На какие группы делят минералы по физическому состоянию?
- 3. Что называют горной породой, в чём заключается основное различие между минералом и горной породой?
- 4. Назовите основные типы горных пород по их происхождению.

- 5. Что понимают под структурой горной породы?
- 6. Какие выделяют основные параметры структуры породы?
- 7. На какие типы структур делят горные породы по степени кристалличности?
- 8. К какому типу горных пород по происхождению (магматических или осадочных) относят полнокристаллические, неполнокристаллические и стекловатые структуры пород?
- 9. Что понимают под текстурой горной породы?
- 10. Какими количественными параметрами характеризуют строение горных пород?

2 Определение объёмной массы пород измерением образцов

- 1. Как плотность горных пород зависит от их слоистости?
- 2. Основные факторы, влияющие на плотность горных пород.
- 3. Влияние на плотность горных пород плотности слагающих эти породы минералов.
- 4. Что характеризует коэффициент плотности горной породы k_{nn} , как его можно рассчитать?
- 5. Что называют удельным весом горной породы γ_0 ?
- 6. Как выглядит аналитическая зависимость между удельным весом и плотностью горных пород?
- 7. На какие группы разделяют горные породы по их удельному весу?
- 8. Для решения каких научных и производственных задач применяют показатели плотности и удельного веса горных пород?
- 9. Как отличают плотность и объёмную массу горных пород?
- 10. Как можно определить объём образца горной породы цилиндрической формы?

3 Определение объёмной массы пород объёмомером

- 1. Что называют объёмной массой горной породы?
- 2. Почему значения объёмной массы испытанных пород отличаются друг от друга?
- 3. Как определяют объёмную массу горных пород с применением объёмомера?
- 4. Что больше, плотность или объёмная масса горных пород, и почему?
- 5. Какие факторы оказывают наибольшее влияние на объёмную массу горных пород?
- 6. Как изменяется объёмная масса пород земной коры с глубиной залегания?
- 7. Что называют удельным весом горной породы и как его определить?
- 8. Почему пористость магматических пород меньше пористости осадочных пород?
- 9. Как определить объёмную массу горной породы по образцам правильной формы с использованием объёмомера?
- 10. Как определяют объём образца породы с использованием объёмомера?

4 Определение объёмной массы пород денситометром

- 1. Как определяют объёмную массу горных пород с применением денситометра?
- 2. Что больше, плотность или объёмная масса горных пород, и почему?
- 3. Как изменяется объёмная масса осадочных пород с глубиной их залегания?
- 4. Что называют объёмным весом горной породы и как его определить?
- 5. Как определить объёмную массу горной породы по образцам правильной формы с использованием денситометра?
- 6. Как используют в горной промышленности значения объёмной массы горных пород?
- 7. Примеры использования значений объёмного веса пород в горнодобывающей промышленности.
- 8. Объяснить, как и почему объёмная масса горных пород зависит от их минерального состава?
- 9. У каких пород значения объемной массы имеют минимальные значения: метаморфических, осадочных, магматических, и почему?
- 10. Чем отличают понятия объёмной массы от объёмного веса?

5 Насыпная масса и коэффициент разрыхления горных пород

- 1. Как можно рассчитать насыпную массу разрушенных пород?
- 2. Как можно определить насыпной вес горной породы в лаборатории?
- 3. Какие факторы влияют на величину насыпного веса горных пород?
- 4. В чём отличие насыпной массы от насыпного веса разрушенных горных пород?
- 5. Какие факторы влияют на величину насыпной массы горных пород?
- 6. Что характеризует коэффициент разрыхления горных пород?

- 7. Какие значения может принимать коэффициент разрыхления пород?
- 8. Указать основные области использования коэффициента разрыхления разрушенных пород в горном пеле
- 9. Примеры использования насыпного веса разрушенных пород в горном деле.
- 10. Пояснить отличия понятий объёмной массы от насыпной массы горных пород?

6 Предел прочности горных пород при растяжении и сжатии

- 1. Что понимают под прочностью горной породы?
- 2. На каком оборудовании можно определить прочность пород?
- 3. Как определить предел прочности пород при растяжении?
- 4. Как определить предел прочности пород при одноосном сжатии?
- 5. Какие параметры горных пород определяют методом раскалывания клиньями на прессе?
- 6. Как определить площадь раскола образца в форме пластины?
- 7. Общий вид формулы для расчёта предела прочности породы при растяжении.
- 8. Чем отличаются нормальные и касательные напряжения в горных породах?
- 9. Теория прочности пород Мора. Основная идея.
- 10. Что представляет собой паспорт прочности породы по Мору?
- 11. Как определить угол внутреннего трения породы?
- 12. Что называют сцеплением породы и как его определить?
- 13. Что называют коэффициентом внутреннего трения породы, и как его определить?
- 14. Объяснить, почему прочность породы в образце отличается от прочности породы в массиве.
- 15. Что характеризует коэффициент вариации значений прочностных свойств горных пород, полученных при испытаниях?

7 Предел прочности горных пород при изгибе

- 1. Что понимают под пределом прочности горной породы?
- 2. Что понимают под прочностью горной породы при изгибе?
- 3. Объяснить, почему прочность горных пород при сжатии, растяжении и изгибе существенно различна.
- 4. Назвать единицы измерения прочности горной породы в системах СИ и СГСМ.
- 5. От каких факторов зависит в основном прочность горных пород?
- 6. Почему трещины и слои существенно снижают прочность горной породы?
- 7. Объяснить порядок выполнения лабораторной работы.
- 8. Какие оборудование, устройства и инструменты использованы для выполнения лабораторной работы?
- 9. Почему значения предела прочности при изгибе испытанных образцов одной и той же горной породы различны?
- 10. Объяснить влияние структурно-текстурных элементов строения на вид и характер разрушения испытанных образцов породы.

8 Теплоёмкость горных пород

- 1. Дать определение удельной теплоёмкости породы.
- 2. Какие факторы влияют на удельную теплоёмкость пород?
- 3. В чём заключается калориметрический способ определения удельной теплоёмкости горных пород?
- 4. Написать уравнение теплового баланса (для определения удельной теплоёмкости горных пород).
- 5. Как влияют строение и влажность пород на их удельную и объёмную теплоёмкость?
- 6. Почему с увеличением содержания рудных минералов в породах уменьшается их теплоёмкость?
- 7. В чём отличие понятий "удельная теплоёмкость" от "объёмная теплоёмкость" горных пород?
- 8. Как используют тепловые свойства пород при добыче полезных ископаемых?
- 9. Объяснить, почему с увеличением температуры возрастает удельная теплоёмкость пород.
- 10. Как зависит теплоёмкость твёрдых горных пород от параметров их строения зернистости, слоистости и т. д.?

9 Магнитные параметры горных пород

1. Назвать основные характеристики магнитных свойств горных пород.

- 2. Дать определение магнитной проницаемости горной породы.
- 3. На какие типы делят горные породы по магнитным свойствам?
- 4. Дать краткую характеристику диамагнитных горных пород.
- 5. Какие горные породы называют парамагнитными и ферромагнитными?
- 6. Как влияет минеральный состав пород на их магнитные свойства?
- 7. Как влияет строение (структура и текстура) горных пород на их магнитные свойства?
- 8. Назвать ориентировочные значения относительной магнитной проницаемости диамагнитных, парамагнитных и ферромагнитных горных пород.
- 9. Начертить и объяснить принципиальную схему измерения кажущейся магнитной восприимчивости горных пород прибором ИМВ-2.
- Почему песчаники, алевролиты, каменные угли и другие осадочные горные породы обладают низкими магнитными свойствами?

10 Динамический коэффициент крепости горных пород

- 1. Что понимают под крепостью горной породы?
- 2. Каким показателем оценивают крепость горных пород?
- 3. Объяснить классификацию горных пород по крепости проф. М. М. Протодьяконова (старшего).
- 4. Написать формулу для определения коэффициента крепости пород по М. М. Протодьяконову (старшему).
- 5. Как определяют динамический коэффициент крепости пород методом толчения?
- 6. Что общего и чем отличаются коэффициенты крепости горных пород по теории М. М. Протодьяконова (старшего) и Л. И. Барона.
- 7. Объяснить устройство прибора ПОК.
- 8. Написать формулу для определения динамического коэффициента крепости пород методом толчения.
- 9. Как изготавливают образцы горных пород, испытуемые методом толчения?
- 10. Охарактеризовать влияние минерального состава и строения горных пород на их крепость.

11 Контактная прочность горных пород

- 1. Что называют контактной прочностью горной породы?
- 2. Какие внутренние и внешние факторы влияют на контактную прочность горных пород?
- 3. Какое напряжённое состояние характеризует в основном контактная прочность породы?
- 4. В чём отличие контактной прочности от твёрдости пород?
- 5. Что больше по величине: контактная прочность или твёрдость пород, какая связь между ними?
- 6. В каких технологических операциях в горном деле необходимо учитывать контактную прочность горных пород?
- 7. Как учитывают контактную прочность горных пород при выборе бурового инструмента?
- 8. Какое оборудование использовали в лабораторной работе для определения контактной прочности пород?
- 9. Какие требования предъявляют к пуансонам для определения контактной прочности горных пород?
- 10. Как классифицировал горные породы по величине контактной прочности проф. Л. И. Барон?

12 Угол естественного откоса и коэффициент трения разрыхленной горной породы

- 1. Что называют углом естественного откоса разрушенных пород?
- 2. Какие факторы влияют на величину угла естественного откоса разрыхлённых пород?
- 3. Какие способы определения угла естественного откоса горной массы применяют в лабораторных условиях?
- 4. Как определяют угол естественного откоса разрыхлённых горных пород с применением полого пилинпра?
- 5. Как определяют угол естественного откоса разрыхлённых горных пород с применением трибометра?
- 6. В каких горнотехнических расчётах используют величину угла естественного откоса разрыхлённых горных пород?
- 7. Каким образом определяют величину угла трения покоя разрыхлённых горных пород с помощью трибометра?
- 8. Что называют коэффициентом трения покоя разрыхлённой горной породы и как его определить?
- 9. От какого основного параметра зависит коэффициент трения разрыхлённой горной породы?

5.2.2 Оценочные средства при промежуточной аттестации

Формой промежуточной аттестации является *зачёт*, в процессе которого определяют сформированность обозначенных в рабочей программе компетенций.

Инструментом измерения степени сформированности компетенций являются ответы обучающихся на вопросы во время опроса по разделам дисциплины.

Опрос можно проводить в письменной и (или) устной, и (или) электронной форме с использованием ресурсов электронной информационно-образовательной среды (ЭИОС) КузГТУ.

- а) При проведении *промежуточной аттестации в письменной и (или) устной форме* обучающийся отвечает на выбранные случайным образом два вопроса, например:
 - 1) Модуль сдвига породы, понятие, количественная оценка.
 - 2) Как характеризует породу показатель её водоотдачи?

Критерии оценивания ответов на вопросы:

- 85 100 баллов при правильном и полном ответе на два вопроса;
- 65 84 баллов при правильном и полном ответе на один из вопросов и правильном, но не полном ответе на другой вопрос;
 - 50 64 баллов при правильном, но не полном ответе на два вопроса;
 - 0 49 баллов при правильном ответе только на один вопрос.

Количество баллов	0 - 49	50 - 64	65 - 84	85 - 100
Дифференцированная оценка	Неудовлетворительно	Удовлетворительно	Хорошо	Отлично
Недифференцированная оценка	Не зачтено	Зачтено		

Вопросы для промежуточной аттестации:

- 1. Слоистость горных пород, понятие, методы количественной оценки.
- 2. Базовые физико-технические параметры горных пород, свойства характеризуемые ими.
- 3. Воздействие внешних физических полей на механические свойства пород.
- 4. Плотностные свойства горных пород, методы определения их количественной оценки.
- 5. Методика определение сцепления C горной породы по паспорту прочности Мора.
- 6. Графический метод построения паспорта прочности пород по теории Мора.
- 7. Упругие свойства пород, понятие, основные количественные оценки.
- 8. Модуль сдвига породы, понятие, количественная оценка.
- 9. Относительные линейные деформации горных пород, условия возникновения, схема и аналитическое выражение.
- 10. Продольные и поперечные деформации горных пород, условия возникновения, схема и аналитическое выражение.
- 11. Какие параметры оценивает гигроскопичность породы?
- 12. Что показывает коэффициент водопрочности горной породы при её водонасыщении?
- 13. Понятие горно-технологических параметров горных пород.
- 14. Теплопроводность горных пород, понятие, аналитическое выражение коэффициента теплопроводности.
- 15. Коэффициент линейного теплового расширения, понятие, способ определения, аналитическое выражение количественной оценки.
- 16. Влияние строения и плотности горных пород на их теплопроводность и температуропроводность.
- 17. Определение относительной магнитной проницаемости горных пород, количественная оценка.
- 18. Различные виды электрической поляризации горных пород, понятия, условия проявления, схемы.
- 19. Удельное электрическое сопротивление горных пород, условия определения, количественная оценка.
- 20. Относительная магнитная проницаемость горных пород, понятие, количественная оценка.
- 21. Акустические свойства пород, понятие, основные количественные оценки.

- 22. Коэффициент поглощения упругих колебаний в горных породах.
- 23. Изменения скорости продольных упругих волн в породах с изменением их объёмной массы, обоснование, причины и условия проявления.
- 24. Отличие понятий "химически связанная вода в минералах" от "физически связанная вода в породах".
- 25. Как характеризует породу показатель её водоотдачи?
- 26. Определение коэффициента крепости горных пород по методу М. М. Протодьяконова (старшего).
- 27. Способ определения динамического коэффициента крепости пород, количественная оценка.
- 28. Как определить коэффициент разрыхления горной породы?
- 29. Методы определения твёрдости горных пород.
- 30. Физико-технические параметры разрыхленных горных пород.
- б) При проведении *промежуточной аттестации* в электронной форме с использованием ресурсов ЭИОС КузГТУ обучающийся выполняет выбранные случайным образом 15-20 тестовых заданий (вопросов) в системе Moodle. Например:
 - 1. Масса единицы объёма минерального скелета горной породы называют ...: плотность.
- 2. Определение сцепления C горной породы по паспорту прочности Мора не возможно графическим методом:
 - а) верно;
 - б) не верно.
 - 3. К упругим свойствам горных пород относят:
 - а) модуль Юнга;
 - б) коэффициент Пуассона;
 - в) модуль сдвига;
 - г) коэффициент пористости.
 - 4. Горно-технологические параметры горных пород:
 - а) буримость, взрываемость, коэффициент крепости;
 - б) скорость распространения продольной упругой волны;
 - в) коэффициент объёмного теплового расширения.
 - 5. На лабораторном прессе можно определить:
 - а) динамический коэффициент крепости;
 - б) прочность породы при изгибе;
 - в) теплопроводность породы;
 - г) прочность породы при растяжении.
 - 6. Строение и плотность горных пород влияют на их:
 - а) теплопроводность;
 - б) температуропроводность;
 - в) теплоёмкость.
 - 7. Предел прочности породы при сдвиге измеряют:
 - а) в ньютонах;
 - б) в паскалях;
 - в) в метрах:
 - г) в градусах.
 - 8. Объёмную массу горных пород можно определить:
 - а) методом Мора;
 - б) денситометром;
 - в) трибометром;
 - г) линейкой и весами.
 - 9. Расположить в порядке возрастания значений параметров горной породы:

- а) плотность;
- б) объёмная масса;
- в) насыпная масса.
- 10. Отметить те минералы, показатель относительной магнитной проницаемости которых больше 1.5:
 - а) магнетит;
 - б) магнезит;
 - в) графит;
 - г) гипс.

Критерии оценивания выполнения тестовых заданий:

Доля правильно выполненных тестов, %	0 - 49	50 - 64	65 - 84	85 - 100
Дифференцированная оценка	Неудовлетворительно	Удовлетворительно	Хорошо	Отлично
Недифференцированная оценка	Не зачтено	Зачтено		

5.2.3 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующие этапы формирования компетенций

а) При проведении *текущего контроля* в виде опроса по контрольным вопросам при защите отчётов о лабораторных работах, обучающийся предъявляет педагогическому работнику к защите индивидуальный отчёт о лабораторной работе.

Педагогический работник анализирует качество оформления отчёта (наличие в отчёте необходимых структурных элементов, его соответствие требованиям, изложенным в лабораторном практикуме), пояснения о ходе выполнения лабораторной работы и составления отчёта.

Далее педагогический работник задает два контрольных вопроса, которые могут быть, как записаны на листе бумаги, так и нет. В течение времени, установленного педагогическим работником, обучающиеся могут дать ответы на заданные вопросы и устно и (или) письменно.

Для этого обучающиеся убирают все личные вещи с учебной мебели, достают лист чистой писчей бумаги и ручку. На листе бумаги записывают: Фамилию, Имя, Отчество, номер группы, наименование дисциплины и дату проведения опроса.

При этом использовать любые печатные, рукописные, электронные информационные ресурсы не допустимо. Если обучающийся воспользовался любыми из перечисленных выше информационных ресурсов, то его ответы на вопросы не принимают, и ему выставляют оценку 0 баллов.

Результаты оценивания ответов на контрольные вопросы при защите отчётов о лабораторных работах педагогический работник сразу доводит до сведения обучающихся.

Обучающийся, который своевременно не прошёл текущий контроль успеваемости, обязан до начала промежуточной аттестации предоставить педагогическому работнику все задолженности по текущему контролю и пройти промежуточную аттестацию на общих основаниях.

б) Процедура проведения *промежуточной аттестации* аналогична проведению текущего контроля.

Педагогический работник при оценке ответов на вопросы во время промежуточной аттестации имеет право попросить обучающегося дать необходимые пояснения предоставленных ответов.